ﻻ يوجد ملخص باللغة العربية
The newly emerging field of wave front shaping in complex media has recently seen enormous progress. The driving force behind these advances has been the experimental accessibility of the information stored in the scattering matrix of a disordered medium, which can nowadays routinely be exploited to focus light as well as to image or to transmit information even across highly turbid scattering samples. We will provide an overview of these new techniques, of their experimental implementations as well as of the underlying theoretical concepts following from mesoscopic scattering theory. In particular, we will highlight the intimate connections between quantum transport phenomena and the scattering of light fields in disordered media, which can both be described by the same theoretical concepts. We also put particular emphasis on how the above topics relate to application-oriented research fields such as optical imaging, sensing and communication.
The optics of correlated disordered media is a fascinating research topic emerging at the interface between the physics of waves in complex media and nanophotonics. Inspired by photonic structures in nature and enabled by advances in nanofabrication
Our everyday experience teaches us that the structure of a medium strongly influences how light propagates through it. A disordered medium, e.g., appears transparent or opaque, depending on whether its structure features a mean free path that is larg
This is the first of a series of papers devoted to develop a microscopical approach to the dipole emission process and its relation to coherent transport in random media. In this Letter, we deduce general expressions for the decay rate of spontaneous
This is the second of a series of papers devoted to develop a microscopical approach to the dipole emission process and its relation to coherent transport in random media. In this Letter, we deduce a relation between the transverse decay rate of an e
A fundamental insight in the theory of diffusive random walks is that the mean length of trajectories traversing a finite open system is independent of the details of the diffusion process. Instead, the mean trajectory length depends only on the syst