ترغب بنشر مسار تعليمي؟ اضغط هنا

Theory of the crossover from lasing to steady state superradiance

300   0   0.0 ( 0 )
 نشر من قبل Murray Holland
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lasing and steady state superradiance are two phenomena that may appear at first glance to be distinct. In a laser, phase information is maintained by a macroscopic intracavity light field, and the robustness of this phase is what leads to the coherence of the output light. In contrast, the coherence of steady-state superradiant systems derives from the macroscopic collective dipole of a many-atom ensemble. In this paper, we develop a quantum theory that connects smoothly between these two extreme limits. We show that lasing and steady-state superradiance should be thought of as the two extreme limits of a continuous crossover. The properties of systems that lie in the superradiance, lasing, and crossover parameter regions are compared. We find that for a given output intensity a narrower linewidth can be obtained by operating closer to the superradiance side of the crossover. We also find that the collective phase is robust against cavity frequency fluctuations in the superradiant regime and against atomic level fluctuations in the lasing regime.



قيم البحث

اقرأ أيضاً

200 - D. Meiser , M. J. Holland 2010
Alkaline-earth like atoms with ultra-narrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential use fulness of this light source as an ultrastable oscillator in clock and precision metrology applications it is crucial to understand the noise properties of this device. In this paper we present a detailed analysis of the intensity fluctuations by means of Monte-Carlo simulations and semi-classical approximations. We find that the light exhibits bunching below threshold, is to a good approximation coherent in the superradiant regime, and is chaotic above the second threshold.
A steady-state superradiant laser can be used to generate ultranarrow-linewidth light, and thus has important applications in the fields of quantum information and precision metrology. However, the light produced by such a laser is still essentially classical. Here, we show that the introduction of a Rydberg medium into a cavity containing atoms with a narrow optical transition can lead to the steady-state superradiant emission of ultranarrow-linewidth $nonclassical$ light. The cavity nonlinearity induced by the Rydberg medium strongly modifies the superradiance threshold, and leads to a Mollow triplet in the cavity output spectrum$-$this behavior can be understood as an unusual analogue of resonance fluorescence. The cavity output spectrum has an extremely sharp central peak, with a linewidth that can be far narrower than that of a classical superradiant laser. This unprecedented spectral sharpness, together with the nonclassical nature of the light, could lead to new applications in which spectrally pure $quantum$ light is desired.
155 - D. Meiser , M. J. Holland 2009
Earth-alkaline-like atoms with ultra-narrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in co nventional systems. We show that it is possible to achieve superradiance in steady state with such systems. We discuss the basic underlying mechanisms as well as the key experimental requirements
58 - C. Y. Lin , H. H. Jen 2021
Light-matter interacting quantum systems manifest strong correlations that lead to distinct cooperative spontaneous emissions of subradiance or superradiance. To demonstrate the essence of long-range correlations in such systems, we consider an atomi c array under the resonant dipole-dipole interactions (RDDI) and apply an interpretable machine learning with the integrated gradients to identify the crossover between the subradiant and superradiant sectors. The machine shows that the next nearest-neighbor couplings in RDDI play as much as the roles of nearest-neighbor ones in determining the whole eigenspectrum within the training sets. Our results present the advantage of machine learning approach with explainable ability to reveal the underlying mechanism of correlations in quantum optical systems, which can be potentially applied to investigate many other strongly interacting quantum many-body systems.
Superradiance in an ensemble of atoms leads to the collective enhancement of radiation in a particular mode shared by the atoms in their spontaneous decay from an excited state. The quantum aspects of this phenomenon are highlighted when such collect ive enhancement is observed in the emission of a single quantum of light. Here we report a further step in exploring experimentally the nonclassical features of superradiance by implementing the process not only with single excitations, but also in a two-excitations state. Particularly we measure and theoretically model the wave-packets corresponding to superradiance in both the single-photon and two-photons regimes. Such progress opens the way to the study and future control of the interaction of nonclassical light modes with collective quantum memories at higher photon numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا