ﻻ يوجد ملخص باللغة العربية
A steady-state superradiant laser can be used to generate ultranarrow-linewidth light, and thus has important applications in the fields of quantum information and precision metrology. However, the light produced by such a laser is still essentially classical. Here, we show that the introduction of a Rydberg medium into a cavity containing atoms with a narrow optical transition can lead to the steady-state superradiant emission of ultranarrow-linewidth $nonclassical$ light. The cavity nonlinearity induced by the Rydberg medium strongly modifies the superradiance threshold, and leads to a Mollow triplet in the cavity output spectrum$-$this behavior can be understood as an unusual analogue of resonance fluorescence. The cavity output spectrum has an extremely sharp central peak, with a linewidth that can be far narrower than that of a classical superradiant laser. This unprecedented spectral sharpness, together with the nonclassical nature of the light, could lead to new applications in which spectrally pure $quantum$ light is desired.
Earth-alkaline-like atoms with ultra-narrow transitions open the door to a new regime of cavity quantum electrodynamics. That regime is characterized by a critical photon number that is many orders of magnitude smaller than what can be achieved in co
Alkaline-earth like atoms with ultra-narrow optical transitions enable superradiance in steady state. The emitted light promises to have an unprecedented stability with a linewidth as narrow as a few millihertz. In order to evaluate the potential use
Lasing and steady state superradiance are two phenomena that may appear at first glance to be distinct. In a laser, phase information is maintained by a macroscopic intracavity light field, and the robustness of this phase is what leads to the cohere
The Knill-Laflamme-Milburn (KLM) states have been proved to be a useful resource for quantum information processing [Nature 409, 46 (2001)]. For atomic KLM states, several schemes have been put forward based on the time-dependent unitary dynamics, bu
We demonstrate a multiphoton Rydberg dark resonance where a Lambda-system is coupled to a Rydberg state. This N-type level scheme combines the ability to slow and store light pulses associated with long lived ground state superpositions, with the str