ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum correlation measurements in interferometric gravitational wave detectors

92   0   0.0 ( 0 )
 نشر من قبل Denis Martynov
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational wave detectors, such as the Advanced Laser Interferometer Gravitational wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer for the first time.



قيم البحث

اقرأ أيضاً

The binary neutron star coalescence GW170817 was observed by gravitational wave detectors during the inspiral phase but sensitivity in the 1-5 kHz band was insufficient to observe the expected nuclear matter signature of the merger itself, and the pr ocess of black hole formation. This provides strong motivation for improving 1--5 kHz sensitivity which is currently limited by photon shot noise. Resonant enhancement by signal recycling normally improves the signal to noise ratio at the expense of bandwidth. The concept of optomechanical white light signal recycling (WLSR) has been proposed, but all schemes to date have been reliant on the development of suitable ultra-low mechanical loss components. Here for the first time we show demonstrated optomechanical resonator structures that meet the loss requirements for a WLSR interferometer with strain sensitivity below 10$^{-24}$ Hz$^{-1/2}$ at a few kHz. Experimental data for two resonators are combined with analytic models of 4km interferometers similar to LIGO, to demonstrate sensitivity enhancement across a much broader band of neutron star coalescence frequencies than dual-recycled Fabry-Perot Michelson detectors of the same length. One candidate resonator is a silicon nitride membrane acoustically isolated from the environment by a phononic crystal. The other is a single-crystal quartz lens that supports bulk acoustic longitudinal waves. Optical power requirements could prefer the membrane resonator, although the bulk acoustic wave resonator gives somewhat better thermal noise performance. Both could be implemented as add-on components to existing detectors.
168 - T. Akutsu , M. Ando , K. Arai 2018
The recent detections of gravitational waves (GWs) reported by LIGO/Virgo collaborations have made significant impact on physics and astronomy. A global network of GW detectors will play a key role to solve the unknown nature of the sources in coordi nated observations with astronomical telescopes and detectors. Here we introduce KAGRA (former name LCGT; Large-scale Cryogenic Gravitational wave Telescope), a new GW detector with two 3-km baseline arms arranged in the shape of an L, located inside the Mt. Ikenoyama, Kamioka, Gifu, Japan. KAGRAs design is similar to those of the second generations such as Advanced LIGO/Virgo, but it will be operating at the cryogenic temperature with sapphire mirrors. This low temperature feature is advantageous for improving the sensitivity around 100 Hz and is considered as an important feature for the third generation GW detector concept (e.g. Einstein Telescope of Europe or Cosmic Explorer of USA). Hence, KAGRA is often called as a 2.5 generation GW detector based on laser interferometry. The installation and commissioning of KAGRA is underway and its cryogenic systems have been successfully tested in May, 2018. KAGRAs first observation run is scheduled in late 2019, aiming to join the third observation run (O3) of the advanced LIGO/Virgo network. In this work, we describe a brief history of KAGRA and highlights of main feature. We also discuss the prospects of GW observation with KAGRA in the era of O3. When operating along with the existing GW detectors, KAGRA will be helpful to locate a GW source more accurately and to determine the source parameters with higher precision, providing information for follow-up observations of a GW trigger candidate.
Current terrestrial gravitational-wave detectors operate at frequencies above 10 Hz. There is strong astrophysical motivation to construct low-frequency gravitational-wave detectors capable of observing 10 mHz - 10Hz signals. While space-based detect ors provide one means of achieving this end, one may also consider terretrial detectors. However, there are numerous technological challenges. In particular, it is difficult to isolate test masses so that they are both seismically isolated and freely falling under the influence of gravity at millihertz frequencies. We investigate the challenges of low-frequency suspension in a hypothetical terrestrial detector. As a case study, we consider a Magnetically Assisted Gravitational-wave Pendulum Intorsion (MAGPI) suspension design. We construct a noise budget to estimate some of the required specifications. In doing so, we identify what are likely to be a number of generic limiting noise sources for terrestrial millihertz gravitational-wave suspension systems (as well as some peculiar to the MAGPI design). We highlight significant experimental challenges in order to argue that the development of millihertz suspensions will be a daunting task. Any system that relies on magnets faces even greater challenges. Entirely mechanical designs such as Zollner pendulums may provide the best path forward.
Gravitational waves are perturbations of the metric of space-time. Six polarizations are possible, although general relativity predicts that only two such polarizations, tensor plus and tensor cross are present for gravitational waves. We give the an alytical formulas for the antenna response functions for the six polarizations which are valid for any equal-arm interferometric gravitational-wave detectors without optical cavities in the arms.The response function averaged over the source direction and polarization angle decreases at high frequencies which deteriorates the signal-to-noise ratio registered in the detector. At high frequencies, the averaged response functions for the tensor and breathing modes fall of as $1/f^2$, the averaged response function for the longitudinal mode falls off as $1/f$ and the averaged response function for the vector mode falls off as $ln(f)/f^2$.
Thermal noise is expected to be the dominant source of noise in the most sensitive frequency band of second generation ground based gravitational wave detectors. Reshaping the beam to a flatter wider profile which probes more of the mirror surface re duces this noise. The Mesa beam shape has been proposed for this purpose and was subsequently generalized to a family of hyperboloidal beams with two parameters: twist angle alpha and beam width D. Varying alpha allows a continuous transition from the nearly-flat to the nearly-concentric Mesa beam configurations. We analytically prove that in the limit of infinite D hyperboloidal beams become Gaussians. The Advanced LIGO diffraction loss design constraint is 1 ppm per bounce. In the past the diffraction loss has often been calculated using the clipping approximation that, in general, underestimates the diffraction loss. We develop a code using pseudo-spectral methods to compute the diffraction loss directly from the propagator. We find that the diffraction loss is not a strictly monotonic function of beam width, but has local minima that occur due to finite mirror effects and leads to natural choices of D. For the Mesa beam a local minimum occurs at D = 10.67 cm and leads to a diffraction loss of 1.4 ppm. We find that if one requires a diffraction loss of strictly 1 ppm, the alpha = 0.91 pi hyperboloidal beam is optimal, leading to the coating thermal noise being lower by about 10% than for a Mesa beam while other types of thermal noise decrease as well. We then develop an iterative process that reconstructs the mirror to specifically account for finite mirror effects. This allows us to increase the D parameter and lower the coating noise by about 30% compared to the original Mesa configuration.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا