ﻻ يوجد ملخص باللغة العربية
We study the formation of the RbCs molecule by an intense laser pulse using nonlinear dynamics. Under the Born-Oppenheimer approximation, the system is modeled by a two degree of freedom rovibrational Hamiltonian, which includes the ground electronic potential energy curve of the diatomic molecule and the interaction of the molecular polarizability with the electric field of the laser. As the laser intensity increases, we observe that the formation probability first increases and then decreases after reaching a maximum. We show that the analysis can be simplified to the investigation of the long-range interaction between the two atoms. We conclude that the formation is due to a very small change in the radial momentum of the dimer induced by the laser pulse. From this observation, we build a reduced one dimensional model which allows us to derive an approximate expression of the formation probability as a function of the laser intensity.
We revisit the stabilization of ionization of atoms subjected to a superintense laser pulse using nonlinear dynamics. We provide an explanation for the lack of complete ionization at high intensity and for the decrease of the ionization probability a
We consider the formation of RbCs by an elliptically polarized laser pulse. By varying the ellipticity of the laser for sufficiently large laser intensity, we see that the formation probability presents a strong dependence, especially around elliptic
We demonstrate a novel dual-beam atom laser formed by outcoupling oppositely polarized components of an F=1 spinor Bose-Einstein condensate whose Zeeman sublevel populations have been coherently evolved through spin dynamics. The condensate is formed
Dimers of carbon disulfide (CS$_2$) molecules embedded in helium nanodroplets are aligned using a moderately intense, 160ps, non-resonant, circularly polarized laser pulse. It is shown that the intermolecular carbon-carbon (C-C) axis aligns along the
Attosecond pulses are fundamental for the investigation of valence and core-electron dynamics on their natural timescale. At present the reproducible generation and characterisation of attosecond waveforms has been demonstrated only through the proce