ترغب بنشر مسار تعليمي؟ اضغط هنا

The COS-Halos Survey: Metallicities in the Low-Redshift Circumgalactic Medium

121   0   0.0 ( 0 )
 نشر من قبل Jason X. Prochaska
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze new far-ultraviolet spectra of 13 quasars from the z~0.2 COS-Halos survey that cover the HI Lyman limit of 14 circumgalactic medium (CGM) systems. These data yield precise estimates or more constraining limits than previous COS-Halos measurements on the HI column densities NHI. We then apply a Monte-Carlo Markov Chain approach on 32 systems from COS-Halos to estimate the metallicity of the cool (T~10^4K) CGM gas that gives rise to low-ionization state metal lines, under the assumption of photoionization equilibrium with the extragalactic UV background. The principle results are: (1) the CGM of field L* galaxies exhibits a declining HI surface density with impact parameter Rperp (at >99.5%$ confidence), (2) the transmission of ionizing radiation through CGM gas alone is 70+/-7%; (3) the metallicity distribution function of the cool CGM is unimodal with a median of 1/3 Z_Sun and a 95% interval from ~1/50 Z_Sun to over 3x solar. The incidence of metal poor (<1/100 Z_Sun) gas is low, implying any such gas discovered along quasar sightlines is typically unrelated to L* galaxies; (4) we find an unexpected increase in gas metallicity with declining NHI (at >99.9% confidence) and, therefore, also with increasing Rperp. The high metallicity at large radii implies early enrichment; (5) A non-parametric estimate of the cool CGM gas mass is M_CGM_cool = 9.2 +/- 4.3 10^10 Msun, which together with new mass estimates for the hot CGM may resolve the galactic missing baryons problem. Future analyses of halo gas should focus on the underlying astrophysics governing the CGM, rather than processes that simply expel the medium from the halo.



قيم البحث

اقرأ أيضاً

We examine the properties of the low-redshift circumgalactic medium (CGM) around star-forming and quenched galaxies in the Simba cosmological hydrodynamic simulations, focusing on comparing HI and metal line absorption to observations from the COS-Ha los and COS-Dwarfs surveys. Halo baryon fractions are generally $lesssim 50%$ of the cosmic fraction due to stellar feedback at low masses, and jet-mode AGN feedback at high masses. Baryons and metals in the CGM of quenched galaxies are $gtrsim 90%$ hot gas, while the CGM of star-forming galaxies is more multi-phase. Hot CGM gas has low metallicity, while warm and cool CGM gas have metallicity close to that of galactic gas. Equivalent widths, covering fractions and total path absorption of HI and selected metal lines (MgII, SiIII, CIV and OVI) around a matched sample of Simba star-forming galaxies are mostly consistent with COS-Halos and COS-Dwarfs observations to $lesssim 0.4$~dex, depending on ion and assumed ionising background. Around matched quenched galaxies, absorption in all ions is lower, with HI absorption significantly under-predicted. Metal-line absorption is sensitive to choice of photo-ionising background; assuming recent backgrounds, Simba matches OVI but under-predicts low ions, while an older background matches low ions but under-predicts OVI. Simba reproduces the observed dichotomy of OVI absorption around star forming and quenched galaxies. CGM metals primarily come from stellar feedback, while jet-mode AGN feedback reduces absorption particularly for lower ions.
We use the combined data from the COS-GASS and COS-Halos surveys to characterize the Circum-Galactic Medium (CGM) surrounding typical low-redshift galaxies in the mass range $rm~M_*sim~10^{9.5-11.5}~M_{odot} $, and over a range of impact parameters e xtending to just beyond the halo virial radius ($rm~R_{vir}$). We find the radial scale length of the distributions of the equivalent widths of the Lyman~$alpha$ and Si III absorbers to be 0.9 and 0.4 $rm~R_{vir}$, respectively. The radial distribution of equivalent widths is relatively uniform for the blue galaxies, but highly patchy (low covering fraction) for the red galaxies. We also find that the Lyman~$alpha$ and Si III equivalent widths show significant positive correlations with the specific star-formation rate (sSFR) of the galaxy. We find a surprising lack of correlations between the halo mass (virial velocity) and either the velocity dispersions or velocity offsets of the Lyman~$alpha$ lines. The ratio of the velocity offset to the velocity dispersion for the Lyman~$alpha$ absorbers has a mean value of $sim$ 4, suggesting that a given the line-of-sight is intersecting a dynamically coherent structure in the CGM rather than a sea of orbiting clouds. The kinematic properties of the CGM are similar in the blue and red galaxies, although we find that a significantly larger fraction of the blue galaxies have large Lyman~$alpha$ velocity offsets (>200 km s$^{-1}$). We show that - if the CGM clouds represent future fuel for star-formation - our new results could imply a large drop in the specific star-formation rate across the galaxy mass-range we probe.
103 - Hsiao-Wen Chen 2016
This chapter presents a review of the current state of knowledge on the cool (T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the last decade, significant progress has been made in characterizing the cool circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate redshifts using absorption spectroscopy. Systematic studies of halo gas around massive galaxies beyond the nearby universe are made possible by large spectroscopic samples of galaxies and quasars in public archives. In addition to accurate and precise constraints for the incidence of cool gas in massive halos, detailed characterizations of gas kinematics and chemical compositions around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining all available measurements shows that infalling clouds from external sources are likely the primary source of cool gas detected at d >~ 100 kpc from massive quiescent galaxies. The origin of the gas closer in is currently less certain, but SNe Ia driven winds appear to contribute significantly to cool gas found at d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous quasars appears to be intimately connected to quasar activities on parsec scales. The observed strong correlation between cool gas covering fraction in quasar host halos and quasar bolometric luminosity remains a puzzle. Combining absorption-line studies with spatially-resolved emission measurements of both gas and galaxies is the necessary next step to address remaining questions.
We present a study exploring the nature and properties of the Circum-Galactic Medium (CGM) and its connection to the atomic gas content in the interstellar medium (ISM) of galaxies as traced by the HI 21cm line. Our sample includes 45 low-z (0.026-0. 049) galaxies from the GALEX Arecibo SDSS Survey. Their CGM was probed via absorption in the spectra of background Quasi-Stellar Objects at impact parameters of 63 to 231kpc. The spectra were obtained with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. We detected neutral hydrogen (Ly$alpha$ absorption-lines) in the CGM of 92% of the galaxies. We find the radial profile of the CGM as traced by the Ly$alpha$ equivalent width can be fit as an exponential with a scale length of roughly the virial radius of the dark matter halo. We found no correlation between the orientation of sightline relative to the galaxy major axis and the Ly$alpha$ equivalent width. The velocity spread of the circumgalactic gas is consistent with that seen in the atomic gas in the interstellar medium. We find a strong correlation (99.8% confidence) between the gas fraction (M(HI)/M*) and the impact-parameter-corrected Ly$alpha$ equivalent width. This is stronger than the analogous correlation between corrected Ly$alpha$ equivalent width and SFR/M* (97.5% confidence). These results imply a physical connection between the HI disk and the CGM, which is on scales an order-of-magnitude larger. This is consistent with the picture in which the HI disk is nourished by accretion of gas from the CGM.
179 - Jason Tumlinson 2013
We present the design and methods of the COS-Halos survey, a systematic investigation of the gaseous halos of 44 z = 0.15-0.35 galaxies using background QSOs observed with the Cosmic Origins Spectrograph aboard the Hubble Space Telescope. This survey has yielded 39 spectra of z_em ~ 0.5 QSOs with S/N ~ 10-15 per resolution element. The QSO sightlines pass within 150 physical kpc of the galaxies, which span early and late types over stellar mass log M* / Msun= 9.5 - 11.5. We find that the CGM exhibits strong HI, averaging 1 Ang in Lya equivalent width out to 150 kpc, with 100% covering fraction for star-forming galaxies and 75% covering for passive galaxies. We find good agreement in column densities between this survey and previous studies over similar range of impact parameter. There is weak evidence for a difference between early- and late-type galaxies in the strength and distribution of HI. Kinematics indicate that the detected material is bound to the host galaxy, such that >~90% of the detected column density is confined within +/-200 km s^-1 of the galaxies. This material generally exists well below the halo virial temperatures at T<~ 10^5 K. We evaluate a number of possible origin scenarios for the detected material, and in the end favor a simple model in which the bulk of the detected HI arises in a bound, cool, low-density photoionized diffuse medium that is generic to all L* galaxies and may harbor a total gaseous mass comparable to galactic stellar masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا