ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective Excitations of Harmonically Trapped Ideal Gases

162   0   0.0 ( 0 )
 نشر من قبل Bert Van Schaeybroeck
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show that the expressions found by the scaling ansatz method are a special case of our solution. Our findings, however, are most useful in case the trap contains more than one phase: we demonstrate how to obtain the oscillation frequencies in case an interface is present between the ideal gas and a different phase.



قيم البحث

اقرأ أيضاً

We present a theoretical study of the collective excitations of a trapped imbalanced fermion gas at unitarity, when the system consists of a superfluid core and a normal outer shell. We formulate the relevant boundary conditions and treat the normal shell both hydrodynamically and collisionlessly. For an isotropic trap, we calculate the mode frequencies as a function of trap polarization. Out-of-phase modes with frequencies below the trapping frequency are obtained for the case of a hydrodynamic normal shell. For the collisionless case, we calculate the monopole mode frequencies, and find that all but the lowest mode may be damped.
139 - P. Pedri 2007
We calculate the excitation modes of a 1D dipolar quantum gas confined in a harmonic trap with frequency $omega_0$ and predict how the frequency of the breathing n=2 mode characterizes the interaction strength evolving from the Tonks-Girardeau value $omega_2=2omega_0$ to the quasi-ordered, super-strongly interacting value $omega_2=sqrt{5}omega_0$. Our predictions are obtained within a hydrodynamic Luttinger-Liquid theory after applying the Local Density Approximation to the equation of state for the homogeneous dipolar gas, which are in turn determined from Reptation Quantum Monte Carlo simulations. They are shown to be in quite accurate agreement with the results of a sum-rule approach. These effects can be observed in current experiments, revealing the Luttinger-liquid nature of 1D dipolar Bose gases.
180 - S.Chiacchiera , T.Lepers , M.Urban 2009
Due to Pauli blocking of intermediate states, the scattering matrix (or $T$ matrix) of two fermionic atoms in a Fermi gas becomes different from that of two atoms in free space. This effect becomes particularly important near a Feshbach resonance, wh ere the interaction in free space is very strong but becomes effectively suppressed in the medium. We calculate the in-medium $T$ matrix in ladder approximation and study its effects on the properties of collective modes of a trapped gas in the normal-fluid phase. We introduce the in-medium interaction on both sides of the Boltzmann equation, namely in the calculation of the mean field and in the calculation of the collision rate. This allows us to explain the observed upward shift of the frequency of the quadrupole mode in the collisionless regime. By including the mean field, we also improve considerably the agreement with the measured temperature dependence of frequency and damping rate of the scissors mode, whereas the use of the in-medium cross section deteriorates the description, in agreement with previous work.
129 - W.-J. Huang , S.-C. Gou 1999
A hydrodynamic description is used to study the zero-temperature properties of a trapped spinor Bose-Einstein condensate in the presence of a uniform magnetic field. We show that, in the case of antiferromagnetic spin-spin interaction, the polar and ferromagnetic configurations of the ground state can coexist in the trap. These two phases are spatially segregated in such a way that the polar state occupies the inner part while the ferromagnetic state occupies the outer part of the atomic cloud. We also derive a set of coupled hydrodynamic equations for the number density and spin density excitations of the system. It is shown that these equations can be analytically solved for the system in an isotropic harmonic trap and a constant magnetic field. Remarkably, the related low lying excitation spectra are completely determined by the solutions in the region occupied by the polar state. We find that, within the Thomas-Fermi approximation, the presence of a constant magnetic field does not change the excitation spectra which still possess the similar form of that obtained by Stringari.
We use quantum Monte Carlo simulations to obtain zero-temperature state diagrams for strongly correlated lattice bosons in one and two dimensions under the influence of a harmonic confining potential. Since harmonic traps generate a coexistence of su perfluid and Mott insulating domains, we use local quantities such as the quantum fluctuations of the density and a local compressibility to identify the phases present in the inhomogeneous density profiles. We emphasize the use of the characteristic density to produce a state diagram that is relevant to experimental optical lattice systems, regardless of the number of bosons or trap curvature and of the validity of the local-density approximation. We show that the critical value of U/t at which Mott insulating domains appear in the trap depends on the filling in the system, and it is in general greater than the value in the homogeneous system. Recent experimental results by Spielman et al. [Phys. Rev. Lett. 100, 120402 (2008)] are analyzed in the context of our two-dimensional state diagram, and shown to exhibit a value for the critical point in good agreement with simulations. We also study the effects of finite, but low (T<t/2), temperatures. We find that in two dimensions they have little influence on our zero-temperature results, while their effect is more pronounced in one dimension.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا