ﻻ يوجد ملخص باللغة العربية
Accurate rates for energy-degenerate l-changing collisions are needed to determine cosmological abundances and recombination. There are now several competing theories for the treatment of this process, and it is not possible to test these experimentally. We show that the H I two-photon continuum produced by astrophysical nebulae is strongly affected by l-changing collisions. We perform an analysis of the different underlying atomic processes and simulate the recombination and two-photon spectrum of a nebula containing H and He. We provide an extended set of effective recombination coefficients and updated l-changing 2s-2p transition rates using several competing theories. In principle, accurate astronomical observations could determine which theory is correct.
A review of a renewed effort to recalculate astrophysical opacities using the R-Matrix method is presented. The computational methods and new extensions are described. Resulting enhancements found in test calculations under stellar interior condition
Fundamental atomic parameters, such as oscillator strengths, play a key role in modelling and understanding the chemical composition of stars in the universe. Despite the significant work underway to produce these parameters for many astrophysically
In the era of multi-messenger astronomy, neutrinos are among the most important astronomical messengers, due to their interaction properties. In these lessons I briefly review the main issues concerning the theory on astrophysical neutrinos.
We investigate the collective scattering of coherent light from a thermal alkali-metal vapor with temperatures ranging from 350 to 450 K, corresponding to average atomic spacings between $0.7 lambda$ and $0.1 lambda$. We develop a theoretical model t
Neutrinos mix and have mass differences, so decays from one to another must occur. But how fast? The best direct limits on non-radiative decays, based on solar and atmospheric neutrinos, are weak, $tau gtrsim 10^{-3}$ s ($m$/eV) or much worse. Greatl