ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing decay of astrophysical neutrinos with incomplete information

55   0   0.0 ( 0 )
 نشر من قبل Mauricio Bustamante
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Neutrinos mix and have mass differences, so decays from one to another must occur. But how fast? The best direct limits on non-radiative decays, based on solar and atmospheric neutrinos, are weak, $tau gtrsim 10^{-3}$ s ($m$/eV) or much worse. Greatly improved sensitivity, $tau sim 10^3$ s ($m$/eV), will eventually be obtained using neutrinos from distant astrophysical sources, but large uncertainties --- in neutrino properties, source properties, and detection aspects --- do not allow this yet. However, there is a way forward now. We show that IceCube diffuse neutrino measurements, supplemented by improvements expected in the near term, can increase sensitivity to $tau sim 10$ s ($m$/eV) for all neutrino mass eigenstates. We provide a roadmap for the necessary analyses and show how to manage the many uncertainties. If limits are set, this would definitively rule out the long-considered possibility that neutrino decay affects solar, atmospheric, or terrestrial neutrino experiments.



قيم البحث

اقرأ أيضاً

120 - Donglian Xu 2017
High-energy (TeV-PeV) cosmic neutrinos are expected to be produced in extremely energetic astrophysical sources such as active galactic nuclei. The IceCube Neutrino Observatory at the South Pole has recently detected a diffuse astrophysical neutrino flux. While the flux is consistent with all flavors of neutrinos being present, identification of tau neutrinos within the flux is yet to occur. Although tau neutrino production is thought to be low at the source, an equal fraction of neutrinos are expected at Earth due to averaged neutrino oscillations over astronomical distances. Above a few hundred TeV, tau neutrinos become resolvable in IceCube with negligible background from cosmic-ray induced atmospheric neutrinos. Identification of tau neutrinos within the observed flux is crucial to precise measurement of its flavor content, which could serve to test fundamental neutrino properties over extremely long baselines, and possibly shed light on new physics beyond the Standard Model. We present the analysis method and results from a recent search for astrophysical tau neutrinos in three years of IceCube data.
Flat Spectrum Radio Quasars (FSRQ) are the most powerful blazars in the gamma-ray band. Although they are supposed to be good candidates in producing high energy neutrinos, no secure detection of FSRQs has been obtained up to now, except for a possib le case of PKS B1424-418. In this work, we compute the expected flux of high energy neutrinos from FSRQs using standard assumptions for the properties of the radiation fields filling the regions surrounding the central supermassive black hole. We obtain as a result that high energy neutrinos are naturally expected from FSRQs in the sub-EeV-EeV energy range and not at PeV energies. This justifies the non-observation of neutrinos from FSRQs with the present technology, since only neutrinos below 10 PeV have been observed. We found that for a non-negligible range of the parameters the cumulative flux from FSRQs is comparable to or even exceeds the expected cosmogenic neutrino flux. This result is intriguing and highlights the importance to disentangle these point-source emissions from the diffuse cosmogenic background.
The flavor composition of high-energy astrophysical neutrinos can reveal the physics governing their production, propagation, and interaction. The IceCube Collaboration has published the first experimental determination of the ratio of the flux in ea ch flavor to the total. We present, as a theoretical counterpart, new results for the allowed ranges of flavor ratios at Earth for arbitrary flavor ratios in the sources. Our results will allow IceCube to more quickly identify when their data imply standard physics, a general class of new physics with arbitrary (incoherent) combinations of mass eigenstates, or new physics that goes beyond that, e.g., with terms that dominate the Hamiltonian at high energy.
Recently we have shown that high-energy neutrinos above 200 TeV detected by IceCube are produced within several parsecs in the central regions of radio-bright blazars, that is active galactic nuclei with jets pointing towards us. To independently tes t this result and extend the analysis to a wider energy range, we use public data for all neutrino energies from seven years of IceCube observations. The IceCube point-source likelihood map is analyzed against the positions of blazars from a statistically complete sample selected by their compact radio flux density. The latter analysis delivers a 3.0 sigma significance with the combined post-trial significance of both studies being 4.1 sigma. The correlation is driven by a large number of blazars. Together with fainter but physically similar sources not included in the sample, they may explain the entire IceCube astrophysical neutrino flux as derived from muon-track analyses. The neutrinos can be produced in interactions of relativistic protons with X-ray self-Compton photons in parsec-scale blazar jets.
132 - Sean Grullon 2010
The IceCube Neutrino Observatory is a 1 $km^{3}$ detector currently under construction at the South Pole. Searching for high energy neutrinos from unresolved astrophysical sources is one of the main analysis strategies used in the search for astrophy sical neutrinos with the IceCube Neutrino Observatory. A hard energy spectrum of neutrinos from isotropically distributed astrophysical sources could contribute to form a detectable signal above the atmospheric neutrino background. A reliable method of estimating the energy of the neutrino-induced lepton is crucial for identifying astrophysical neutrinos. An analysis is underway using data from the half completed detector taken during its 2008-2009 science run.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا