ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of nonclassical properties of light with multiplexing layouts

112   0   0.0 ( 0 )
 نشر من قبل Jan Sperling
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent contribution, we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued measure that describes multiplexing layouts with arbitrary detectors. From the resulting quantum version of a multinomial statistics, we infer nonclassicality probes based on a matrix of normally ordered moments. We discuss these criteria and apply the theory to our data which are measured with superconducting transition-edge sensors. Our experiment produces heralded multi-photon states from a parametric down-conversion light source. We show that the known notions of sub-Poisson and sub-binomial light can be deduced from our general approach, and we establish the concept of sub-multinomial light, which is shown to outperform the former two concepts of nonclassicality for our data.



قيم البحث

اقرأ أيضاً

71 - Lars M. Johansen 2003
It is demonstrated that a weak measurement of the squared quadrature observable may yield negative values for coherent states. This result cannot be reproduced by a classical theory where quadratures are stochastic $c$-numbers. The real part of the w eak value is a conditional moment of the Margenau-Hill distribution. The nonclassicality of coherent states can be associated with negative values of the Margenau-Hill distribution. A more general type of weak measurement is considered, where the pointer can be in an arbitrary state, pure or mixed.
The efficient certification of nonclassical effects of light forms the basis for applications in optical quantum technologies. We derive general correlation conditions for the verification of nonclassical light based on multiplexed detection. The obt ained nonclassicality criteria are valid for imperfectly-balanced multiplexing scenarios with on-off detectors and do not require any knowledge about the detector system. In this sense they are fully independent of the detector system. In our experiment, we study light emitted by clusters of single-photon emitters, whose photon number may exceed the number of detection channels. Even under such conditions, our criteria certify nonclassicality with high statistical significance.
237 - C. Gabriel , J. Janousek , 2009
Squeezing experiments which are capable of creating a minimum uncertainty state during the nonlinear process, for example optical parametric amplification, are commonly used to produce light far below the quantum noise limit. This report presents a m ethod with which one can characterize this minimum uncertainty state and gain valuable knowledge of the experimental setup.
Complementarity theory is the essence of the Copenhagen interpretation. Since the Hanbury Brown and Twiss experiments, the particle nature of photons has been intensively studied for various quantum phenomena such as anticorrelation and Bell inequali ty violation in terms of two-photon correlation. Regarding the fundamental question on these quantum features, however, no clear answer exists for how to generate such an entanglement photon pair and what causes the maximum correlation between them. Here, we experimentally demonstrate the physics of anticorrelation on a beam splitter using sub-Poisson distributed coherent photons, where a particular photon number is post-selected using a multiphoton resolving coincidence measurement technique. According to Born rule regarding self-interference in an interferometric scheme, a photon does not interact with others, but can interfere by itself. This is the heart of anticorrelation, where a particular phase relation between paired photons is unveiled for anticorrelation, satisfying the complementarity theory of quantum mechanics.
We study an optomechanical system for the purpose of generating a nonclassical mechanical state when a mechanical oscillator is quadratically coupled to a single-mode cavity field driven by a squeezed optical field. The system corresponds to a regime where the optical dissipation dominates both the mechanical damping and the optomechanical coupling. We identify that multi-phonon processes emerge in the optomechanical system and show that a mechanical oscillator prepared in the ground state will evolve into an amplitude-squared squeezed vacuum state. The Wigner distribution of the steady state of the mechanical oscillator is non-Gaussian exhibiting quantum interference and four-fold symmetry. This nonclassical mechanical state, generated via reservoir engineering, can be used for quantum correlation measurements of the position and momentum of the mechanics below the standard quantum limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا