ﻻ يوجد ملخص باللغة العربية
Squeezing experiments which are capable of creating a minimum uncertainty state during the nonlinear process, for example optical parametric amplification, are commonly used to produce light far below the quantum noise limit. This report presents a method with which one can characterize this minimum uncertainty state and gain valuable knowledge of the experimental setup.
A minimum uncertainty state for position and momentum is obtained in quantum viscous hydrodynamics which is defined through the Navier-Stokes-Korteweg (NSK) equation. This state is the generalization of the coherent state and its uncertainty is given
We study an optomechanical system for the purpose of generating a nonclassical mechanical state when a mechanical oscillator is quadratically coupled to a single-mode cavity field driven by a squeezed optical field. The system corresponds to a regime
We address the question, does a system A being entangled with another system B, put any constraints on the Heisenberg uncertainty relation (or the Schrodinger-Robertson inequality)? We find that the equality of the uncertainty relation cannot be reac
The efficient certification of nonclassical effects of light forms the basis for applications in optical quantum technologies. We derive general correlation conditions for the verification of nonclassical light based on multiplexed detection. The obt
In a recent contribution, we introduced and applied a detector-independent method to uncover nonclassicality. Here, we extend those techniques and give more details on the performed analysis. We derive a general theory of the positive-operator-valued