ﻻ يوجد ملخص باللغة العربية
In this paper, we will study some properties of oscillaton, spherically symmetric object made of a real time-dependent scalar field, Using a self- interaction quartic scalar potential instead of a quadratic or exponential ones discussed in previous works. Since the oscillatons can be regarded as models for astrophysical objects which play the role of dark matter, there- fore investigation of their properties has more importance place in present time of physics; research. Therefore we investigate the properties of these objects by Solving the system of differential equations obtained from the Einstein Klein Gordon (EKG) equations and will show their importance as new candidates for the role of dark matter in the galactic scales.
We solve numerically the Einstein-Klein-Gordon system with spherical symmetry, for a massive real scalar field endowed with a quartic self-interaction potential, and obtain the so-called $Phi^4$-oscillatons which is the short name for oscillating sol
It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill
The generalized Proca theories with second-order equations of motion can be healthily extended to a more general framework in which the number of propagating degrees of freedom remains unchanged. In the presence of a quartic-order nonminimal coupling
In a Quantum Field Theory with a time-dependent background, time-translational symmetry is broken. We therefore expect time-dependent loop corrections to cosmological observables after renormalization for an interacting field, with the consequent phy
We study the emission of large-scales wavelength space-time waves during the inflationary expansion of the universe, produced by back-reaction effects. As an example, we study an inflationary model with variable time scale, where the scale factor of