ﻻ يوجد ملخص باللغة العربية
In a Quantum Field Theory with a time-dependent background, time-translational symmetry is broken. We therefore expect time-dependent loop corrections to cosmological observables after renormalization for an interacting field, with the consequent physical implications. In this paper we compute and discuss such radiative corrections to the primordial spectrum within simple models, both for massless and massive virtual fields, and we disentangle the time-dependence caused by the background and by the initial state after renormalization. For the investigated models the departure from near-scale-invariance is very small and there is full compatibility with the current Planck data constraints. Future CMB measurements may improve the current constraints on feature-full primordial spectra and possibly observe these effects in the most optimistic scenario of hybrid inflation, revealing the interacting nature of the inflaton field.
Inflation may provide unique insight into the physics at the highest available energy scales that cannot be replicated in any realistic terrestrial experiment. Features in the primordial power spectrum are generically predicted in a wide class of mod
The first year of observations by the Planck satellite mission shows that the cosmic microwave background (CMB) fluctuations are consistent with gaussian statistics in the primordial perturbations, a key prediction of the simplest models of inflation
Sharp features in the primordial power spectrum are a powerful window into the inflationary epoch. To date, the cosmic microwave background (CMB) has offered the most sensitive avenue to search for these signatures. In this paper, we demonstrate the
It has been well known since the 1970s that stationary black holes do not generically support scalar hair. Most of the no-hair theorems which support this depend crucially upon the assumption that the scalar field has no time dependence. Here we fill
We consider cosmology in the framework of a `material reference system of D particles, including the effects of quantum recoil induced by closed-string probe particles. We find a time-dependent contribution to the cosmological vacuum energy, which re