ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerical solution of space-fractional partial differential equations by a differential quadrature approach

125   0   0.0 ( 0 )
 نشر من قبل Xiaogang Zhu
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article aims to develop a direct numerical approach to solve the space-fractional partial differential equations (PDEs) based on a new differential quadrature (DQ) technique. The fractional derivatives are approximated by the weighted linear combinations of the function values at discrete grid points on problem domain with the weights calculated via using three types of radial basis functions (RBFs) as test functions. The method in presence is robust, straight forward to apply, and highly accurate under the condition that the shape parameters of RBFs are well chosen. Numerical tests are provided to illustrate its validity and capability.



قيم البحث

اقرأ أيضاً

257 - Yingjun Jiang , Xuejun Xu 2015
We propose some multigrid methods for solving the algebraic systems resulting from finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that our multigrid methods are optimal, which means the converge nce rates of the methods are independent of the mesh size and mesh level. Moreover, our theoretical analysis and convergence results do not require regularity assumptions of the model problems. Numerical results are given to support our theoretical findings.
233 - Yingjun Jiang , Xuejun Xu 2015
In this paper, a two-level additive Schwarz preconditioner is proposed for solving the algebraic systems resulting from the finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that the condition numb er of the preconditioned system is bounded by C(1+H/delta), where H is the maximum diameter of subdomains and delta is the overlap size among the subdomains. Numerical results are given to support our theoretical findings.
90 - X. G. Zhu , Z. B. Yuan , F. Liu 2017
In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the diff erential quadrature (DQ) methods for solving the 2D space-fractional diffusion equations on irregular domains. The methods in presence reduce the original equation into a set of ordinary differential equations (ODEs) by introducing valid DQ formulations to fractional directional derivatives based on the functional values at scattered nodal points on problem domain. The required weighted coefficients are calculated by using radial basis functions (RBFs) as trial functions, and the resultant ODEs are discretized by the Crank-Nicolson scheme. The main advantages of our methods lie in their flexibility and applicability to arbitrary domains. A series of illustrated examples are finally provided to support these points.
212 - Guo-cheng Wu 2010
Fractional variational approach has gained much attention in recent years. There are famous fractional derivatives such as Caputo derivative, Riesz derivative and Riemann-Liouville derivative. Sever
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential perspective, most notably the absence of explicit conditioning formula. This paper extends earlier work on linear PDEs to a general class of initial value problems specified by nonlinear PDEs, motivated by problems for which evaluations of the right-hand-side, initial conditions, or boundary conditions of the PDE have a high computational cost. The proposed method can be viewed as exact Bayesian inference under an approximate likelihood, which is based on discretisation of the nonlinear differential operator. Proof-of-concept experimental results demonstrate that meaningful probabilistic uncertainty quantification for the unknown solution of the PDE can be performed, while controlling the number of times the right-hand-side, initial and boundary conditions are evaluated. A suitable prior model for the solution of the PDE is identified using novel theoretical analysis of the sample path properties of Mat{e}rn processes, which may be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا