ﻻ يوجد ملخص باللغة العربية
This article aims to develop a direct numerical approach to solve the space-fractional partial differential equations (PDEs) based on a new differential quadrature (DQ) technique. The fractional derivatives are approximated by the weighted linear combinations of the function values at discrete grid points on problem domain with the weights calculated via using three types of radial basis functions (RBFs) as test functions. The method in presence is robust, straight forward to apply, and highly accurate under the condition that the shape parameters of RBFs are well chosen. Numerical tests are provided to illustrate its validity and capability.
We propose some multigrid methods for solving the algebraic systems resulting from finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that our multigrid methods are optimal, which means the converge
In this paper, a two-level additive Schwarz preconditioner is proposed for solving the algebraic systems resulting from the finite element approximations of space fractional partial differential equations (SFPDEs). It is shown that the condition numb
In mathematical physics, the space-fractional diffusion equations are of particular interest in the studies of physical phenomena modelled by L{e}vy processes, which are sometimes called super-diffusion equations. In this article, we develop the diff
Fractional variational approach has gained much attention in recent years. There are famous fractional derivatives such as Caputo derivative, Riesz derivative and Riemann-Liouville derivative. Sever
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential