ﻻ يوجد ملخص باللغة العربية
Growth of hard--rod monolayers via deposition is studied in a lattice model using rods with discrete orientations and in a continuum model with hard spherocylinders. The lattice model is treated with kinetic Monte Carlo simulations and dynamic density functional theory while the continuum model is studied by dynamic Monte Carlo simulations equivalent to diffusive dynamics. The evolution of nematic order (excess of upright particles, standing--up transition) is an entropic effect and is mainly governed by the equilibrium solution, {rendering a continuous transition} (paper I, J. Chem. Phys. 145, 074902 (2016)). Strong non--equilibrium effects (e.g. a noticeable dependence on the ratio of rates for translational and rotational moves) are found for attractive substrate potentials favoring lying rods. Results from the lattice and the continuum models agree qualitatively if the relevant characteristic times for diffusion, relaxation of nematic order and deposition are matched properly. Applicability of these monolayer results to multilayer growth is discussed for a continuum--model realization in three dimensions where spherocylinders are deposited continuously onto a substrate via diffusion.
The equilibrium properties of hard rod monolayers are investigated in a lattice model (where position and orientation of a rod are restricted to discrete values) as well as in an off--lattice model featuring spherocylinders with continuous positional
Based on the collision rules for hard needles we derive a hydrodynamic equation that determines the coupled translational and rotational dynamics of a tagged thin rod in an ensemble of identical rods. Specifically, based on a Pseudo-Liouville operato
Based on simplifications of previous numerical calculations [Graf and L{o}wen, Phys. Rev. E textbf{59}, 1932 (1999)], we propose algebraic free energy expressions for the smectic-A liquid crystal phase and the crystal phases of hard spherocylinders.
Phase transitions are uncommon among homogenous one-dimensional fluids of classical particles owing to a general non-existence result due to van Hove. A way to circumvent van Hoves theorem is to consider an interparticle potential that is finite ever
We study a mass transport model, where spherical particles diffusing on a ring can stochastically exchange volume $v$, with the constraint of a fixed total volume $V=sum_{i=1}^N v_i$, $N$ being the total number of particles. The particles, referred t