ﻻ يوجد ملخص باللغة العربية
Tapered and dispersion managed (DM) silicon nanophotonic waveguides are investigated for the generation of optimal ultra broadband supercontinuum (SC). DM waveguides are structures showing a longitudinally dependent group velocity dispersion that results from the variation of the waveguide width with the propagation distance. For the generation of optimal SC, a genetic algorithm has been used to find the best dispersion map. This allows for the generation of highly coherent supercontinuums that span over 1.14 octaves from 1300 nm to 2860 nm and 1.25 octaves from 1200 nm to 2870 nm at -20 dB level for the tapered and DM waveguides respectively, for a 2 $mu$m, 200 fs and 6.4 pJ input pulse. The comparison of these two structures with the usually considered optimal fixed width waveguide shows that the SC is broader and flatter in the more elaborated DM waveguide, while the high coherence is ensured by the varying dispersion.
Tapered and dispersion managed (DM) silicon nanophotonic waveguides are investigated for the generation of optimal ultra broadband supercontinuum (SC). DM waveguides are structures showing a longitudinally dependent group velocity dispersion that res
Ability to selectively enhance the amplitude and maintain high coherence of the supercontinuum signal with long pulses is gaining significance. In this work an extra degree of freedom afforded by varying the dispersion profile of a waveguide is utili
Supercontinuum generation in integrated photonic waveguides is a versatile source of broadband light, and the generated spectrum is largely determined by the phase-matching conditions. Here we show that quasi-phase-matching via periodic modulations o
We demonstrate a fully coherent supercontinuum spectrum spanning 500 nm from a silicon-on-insulator photonic wire waveguide pumped at 1575 nm wavelength. An excellent agreement with numerical simulations is reported. The simulations also show that a
Strong amplification in integrated photonics is one of the most desired optical functionalities for computing, communications, sensing, and quantum information processing. Semiconductor gain and cubic nonlinearities, such as four-wave mixing and stim