ﻻ يوجد ملخص باللغة العربية
We study the leading effective interactions between the Standard Model fields and a generic singlet CP-odd (pseudo)Goldstone boson. Two possible frameworks for electroweak symmetry breaking are considered: linear and non-linear. For the latter case, the basis of leading effective operators is determined and compared with that for the linear expansion. Associated phenomenological signals at colliders are explored for both scenarios, deriving new bounds and analyzing future prospects, including LHC and High Luminosity LHC sensitivities. Mono-$Z$, mono-$W$, $W$-photon plus missing energy and on-shell top final states are most promising signals expected in both frameworks. In addition, non-standard Higgs decays and mono-Higgs signatures are especially prominent and expected to be dominant in non-linear realizations.
Axions and axion-like particles (ALPs) are well-motivated low-energy relics of high-energy extensions of the Standard Model, which interact with the known particles through higher-dimensional operators suppressed by the mass scale $Lambda$ of the new
We argue that in models with several high scales; e.g. in composite Higgs models or in gauge extensions of the Standard Model (SM), vector-like leptons can be likely produced in a relatively large $sqrt{s}$ region of the phase space. Likewise, they c
Unstable particles are notorious in perturbative quantum field theory for producing singular propagators in scattering amplitudes that require regularization by the finite width. In this review I discuss the construction of an effective field theory
We revisit the chiral kinetic equation from high density effective theory approach, finding a chiral kinetic equation differs from counterpart derived from field theory in high order terms in the $O(1/mu)$ expansion, but in agreement with the equatio
We hypothesize that the correct power counting for charmonia is in the parameter Lambda_QCD/m_c, but is not based purely on dimensional analysis (as is HQET). This power counting leads to predictions which differ from those resulting from the usual v