ترغب بنشر مسار تعليمي؟ اضغط هنا

A Proof Theory for Model Checking: An Extended Abstract

94   0   0.0 ( 0 )
 نشر من قبل EPTCS
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While model checking has often been considered as a practical alternative to building formal proofs, we argue here that the theory of sequent calculus proofs can be used to provide an appealing foundation for model checking. Since the emphasis of model checking is on establishing the truth of a property in a model, we rely on the proof theoretic notion of additive inference rules, since such rules allow provability to directly describe truth conditions. Unfortunately, the additive treatment of quantifiers requires inference rules to have infinite sets of premises and the additive treatment of model descriptions provides no natural notion of state exploration. By employing a focused proof system, it is possible to construct large scale, synthetic rules that also qualify as additive but contain elements of multiplicative inference. These additive synthetic rules -- essentially rules built from the description of a model -- allow a direct treatment of state exploration. This proof theoretic framework provides a natural treatment of reachability and non-reachability problems, as well as tabled deduction, bisimulation, and winning strategies.



قيم البحث

اقرأ أيضاً

This paper shows that conditional independence reasoning can be applied to optimize epistemic model checking, in which one verifies that a model for a number of agents operating with imperfect information satisfies a formula expressed in a modal mult i-agent logic of knowledge. The optimization has been implemented in the epistemic model checker MCK. The paper reports experimental results demonstrating that it can yield multiple orders of magnitude performance improvements.
The first iteration of the proof format used by the SMT solver veriT was presented ten years ago at the first PxTP workshop. Since then the format has matured. veriT proofs are used within multiple applications, and other solvers generate proofs in t he same format. We would now like to gather feedback from the community to guide future developments. Towards this, we review the history of the format, present our pragmatic approach to develop the format, and also discuss problems that might arise when other solvers use the format.
105 - A. Bernasconi 2017
This paper describes in detail the example introduced in the preliminary evaluation of THRIVE. Specifically, it evaluates THRIVE over an abstraction of the ground model proposed for a critical component belonging to a medical device used by optometrists and ophtalmologits to dected visual problems.
194 - Andreas Abel 2011
We define a logical framework with singleton types and one universe of small types. We give the semantics using a PER model; it is used for constructing a normalisation-by-evaluation algorithm. We prove completeness and soundness of the algorithm; an d get as a corollary the injectivity of type constructors. Then we give the definition of a correct and complete type-checking algorithm for terms in normal form. We extend the results to proof-irrelevant propositions.
133 - Peter Selinger 2008
We give a categorical semantics for a call-by-value linear lambda calculus. Such a lambda calculus was used by Selinger and Valiron as the backbone of a functional programming language for quantum computation. One feature of this lambda calculus is i ts linear type system, which includes a duplicability operator ! as in linear logic. Another main feature is its call-by-value reduction strategy, together with a side-effect to model probabilistic measurements. The ! operator gives rise to a comonad, as in the linear logic models of Seely, Bierman, and Benton. The side-effects give rise to a monad, as in Moggis computational lambda calculus. It is this combination of a monad and a comonad that makes the present paper interesting. We show that our categorical semantics is sound and complete.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا