ﻻ يوجد ملخص باللغة العربية
While model checking has often been considered as a practical alternative to building formal proofs, we argue here that the theory of sequent calculus proofs can be used to provide an appealing foundation for model checking. Since the emphasis of model checking is on establishing the truth of a property in a model, we rely on the proof theoretic notion of additive inference rules, since such rules allow provability to directly describe truth conditions. Unfortunately, the additive treatment of quantifiers requires inference rules to have infinite sets of premises and the additive treatment of model descriptions provides no natural notion of state exploration. By employing a focused proof system, it is possible to construct large scale, synthetic rules that also qualify as additive but contain elements of multiplicative inference. These additive synthetic rules -- essentially rules built from the description of a model -- allow a direct treatment of state exploration. This proof theoretic framework provides a natural treatment of reachability and non-reachability problems, as well as tabled deduction, bisimulation, and winning strategies.
This paper shows that conditional independence reasoning can be applied to optimize epistemic model checking, in which one verifies that a model for a number of agents operating with imperfect information satisfies a formula expressed in a modal mult
The first iteration of the proof format used by the SMT solver veriT was presented ten years ago at the first PxTP workshop. Since then the format has matured. veriT proofs are used within multiple applications, and other solvers generate proofs in t
This paper describes in detail the example introduced in the preliminary evaluation of THRIVE. Specifically, it evaluates THRIVE over an abstraction of the ground model proposed for a critical component belonging to a medical device used by optometrists and ophtalmologits to dected visual problems.
We define a logical framework with singleton types and one universe of small types. We give the semantics using a PER model; it is used for constructing a normalisation-by-evaluation algorithm. We prove completeness and soundness of the algorithm; an
We give a categorical semantics for a call-by-value linear lambda calculus. Such a lambda calculus was used by Selinger and Valiron as the backbone of a functional programming language for quantum computation. One feature of this lambda calculus is i