ﻻ يوجد ملخص باللغة العربية
In this work we will test an alternative model of gravity belonging to the large family of galileon models. It is characterized by an intrinsic breaking of the Vainshtein mechanism inside large astrophysical objects, thus having possibly detectable observational signatures. We will compare theoretical predictions from this model with the observed total mass profile for a sample of clusters of galaxies. The profiles are derived using two complementary tools: X-ray hot intra-cluster gas dynamics, and strong and weak gravitational lensing. We find that a dependence with the dynamical internal status of each cluster is possible; for those clusters which are very close to be relaxed, and thus less perturbed by possible astrophysical local processes, the galileon model gives a quite good fit to both X-ray and lensing observations. Both masses and concentrations for the dark matter halos are consistent with earlier results found in numerical simulations and in the literature, and no compelling statistical evidence for a deviation from general relativity is detectable from the present observational state. Actually, the characteristic galileon parameter $Upsilon$ is always consistent with zero, and only an upper limit ($lesssim0.086$ at $1sigma$, $lesssim0.16$ at $2sigma$, and $lesssim0.23$ at $3sigma$) can be established. Some interesting distinctive deviations might be operative, but the statistical validity of the results is far from strong, and better data would be needed in order to either confirm or reject a potential tension with general relativity.
One of the most pressing questions in modified gravity is how deviations from general relativity can manifest in upcoming galaxy surveys. This is especially relevant for theories exhibiting Vainshtein screening, where such deviations are efficiently
We introduce and demonstrate the power of a method to speed up current iterative techniques for N-body modified gravity simulations. Our method is based on the observation that the accuracy of the final result is not compromised if the calculation of
The Vainshtein screening mechanism relies on nonlinear interaction terms becoming dominant close to a compact source. However, theories displaying this mechanism are generally understood to be low-energy theories: it is unclear that operators emergin
We study the Vainshtein mechanism in the context of slowly rotating stars in scalar-tensor theories. While the Vainshtein screening is well established for spherically symmetric spacetimes, we examine its validity in the axisymmetric case for slowly
We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high den