ﻻ يوجد ملخص باللغة العربية
One of the most pressing questions in modified gravity is how deviations from general relativity can manifest in upcoming galaxy surveys. This is especially relevant for theories exhibiting Vainshtein screening, where such deviations are efficiently suppressed within a (typically large) Vainshtein radius. However, Vainshtein screening is known to be shape dependent: it is most effective around spherical sources, weaker around cylindrical objects and completely absent for planar sources. The Cosmic Web therefore offers a testing ground, as it displays many shapes in the form of clusters, filaments and walls. In this work, we explicitly derive the signature of the shape dependence of Vainshtein screening on the matter bispectrum, by considering a cubic Galileon model with a conformal coupling to matter and a cosmological constant. We perform a second order perturbative analysis, deriving analytic, integral expressions for the bispectrum, which we integrate using hi_class. We find that the shape dependence of Vainshtein screening enters the bispectrum with a unique scale-factor dependence of $propto a^{3/2}$. The magnitude of the effect today is up to 2 % for a model whose linear growth rate deviates up to 5 % from $Lambda$CDM.
We investigate the dependence of the Vainshtein screening mechanism on the cosmic web morphology of both dark matter particles and halos as determined by ORIGAMI. Unlike chameleon and symmetron screening, which come into effect in regions of high den
Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological
We study perturbation theory for large-scale structure in the most general scalar-tensor theories propagating a single scalar degree of freedom, which include Horndeski theories and beyond. We model the parameter space using the effective field theor
We study the angular bispectrum of local type arising from the (possibly correlated) combination of a primordial adiabatic mode with an isocurvature one. Generically, this bispectrum can be decomposed into six elementary bispectra. We estimate how pr
We study the effect of weak lensing by cosmic (super-)strings on the higher-order statistics of the cosmic microwave background (CMB). A cosmic string segment is expected to cause weak lensing as well as an integrated Sachs-Wolfe (ISW) effect, the so