ﻻ يوجد ملخص باللغة العربية
Recent population studies have shown that the variability Doppler factors can adequately describe blazars as a population. We use the flux density variations found within the extensive radio multi-wavelength datasets of the F-GAMMA program, a total of 10 frequencies from 2.64 up to 142.33 GHz, in order to estimate the variability Doppler factors for 58 $gamma$-ray bright sources, for 20 of which no variability Doppler factor has been estimated before. We employ specifically designed algorithms in order to obtain a model for each flare at each frequency. We then identify each event and track its evolution through all the available frequencies for each source. This approach allows us to distinguish significant events producing flares from stochastic variability in blazar jets. It also allows us to effectively constrain the variability brightness temperature and hence the variability Doppler factor as well as provide error estimates. Our method can produce the most accurate (16% error on average) estimates in the literature to date.
The F-GAMMA program is a coordinated effort to investigate the physics of Active Galactic Nuclei (AGNs) via multi-frequency monitoring of Fermi blazars. In the current study we show and discuss the evolution of broad-band radio spectra, which are mea
So far, no systematic long-term blazar monitoring programs and detailed variability studies exist at sub-mm wavelengths. Here, we present a new sub-mm blazar monitoring program using the APEX 12-m telescope. A sample of about 40 gamma-ray blazars has
The advent of the Fermi-GST with its unprecedented capability to monitor the entire 4 pi sky within less than 2-3 hours, introduced new standard in time domain gamma-ray astronomy. To explore this new avenue of extragalactic physics the F-GAMMA progr
We present an in-depth and systematic variability study of a sample of 20 powerful blazars, including 12 BL Lacs and 8 flat spectrum radio quasars, applying various analysis tools such as flux distribution, symmetry analysis, and time series analysis
The INTEGRAL mission has played a major role in blazar science, thanks to its sensitive coverage of a spectral region (3-100 keV) that is critical for this type of sources, to its flexibility of scheduling and to the large field of view of its camera