ترغب بنشر مسار تعليمي؟ اضغط هنا

APEX sub-mm monitoring of gamma-ray blazars

140   0   0.0 ( 0 )
 نشر من قبل Stefan Larsson Dr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

So far, no systematic long-term blazar monitoring programs and detailed variability studies exist at sub-mm wavelengths. Here, we present a new sub-mm blazar monitoring program using the APEX 12-m telescope. A sample of about 40 gamma-ray blazars has been monitored since 2007/2008 with the LABOCA bolometer camera at 345 GHz. First light curves, preliminary variability results and a first comparison with the longer cm/mm bands (F-GAMMA program) are presented, demonstrating the extreme variability characteristics of blazars at such short wavelengths.



قيم البحث

اقرأ أيضاً

The exact location of the gamma-ray emitting region in blazars is still controversial. In order to attack this problem we present first results of a cross-correlation analysis between radio (11 cm to 0.8 mm wavelength, F-GAMMA program) and gamma-ray (0.1-300 GeV) ~ 3.5 year light curves of 54 Fermi-bright blazars. We perform a source stacking analysis and estimate significances and chance correlations using mixed source correlations. Our results reveal: (i) the first highly significant multi-band radio and gamma-ray correlations (radio lagging gamma rays) when averaging over the whole sample, (ii) average time delays (source frame: 76+/-23 to 7+/-9 days), systematically decreasing from cm to mm/sub-mm bands with a frequency dependence tau_r,gamma (nu) ~ nu^-1, in good agreement with jet opacity dominated by synchrotron self-absorption, (iii) a bulk gamma-ray production region typically located within/upstream of the 3 mm core region (tau_3mm,gamma=12+/-8 days), (iv) mean distances between the region of gamma-ray peak emission and the radio tau=1 photosphere decreasing from 9.8+/-3.0 pc (11 cm) to 0.9+/-1.1 pc (2 mm) and 1.4+/-0.8 pc (0.8 mm), (v) 3 mm/gamma-ray correlations in 9 individual sources at a significance level where one is expected by chance (probability: 4 times 10^-6), (vi) opacity and time lag core shift estimates for quasar 3C 454.3 providing a lower limit for the distance of the bulk gamma-ray production region from the supermassive black hole (SMBH) of ~ 0.8-1.6 pc, i.e. at the outer edge of the Broad Line Region (BLR) or beyond. A 3 mm tau=1 surface at ~ 2-3 pc from the jet-base (i.e. well outside the canonical BLR) finally suggests that BLR material extends to several pc distances from the SMBH.
We present $gamma$-ray, X-ray, ultraviolet, optical, and near-infrared light curves of 33 $gamma$-ray bright blazars over four years that we have been monitoring since 2008 August with multiple optical, ground-based telescopes and the Swift satellite , and augmented by data from the Fermi Gamma-ray Space Telescope and other publicly available data from Swift. The sample consists of 21 flat-spectrum radio quasars (FSRQs) and 12 BL Lac objects (BL Lacs). We identify quiescent and active states of the sources based on their $gamma$-ray behavior. We derive $gamma$-ray, X-ray, and optical spectral indices, $alpha_gamma$, $alpha_X$, and $alpha_o$, respectively ($F_ upropto u^alpha$), and construct spectral energy distributions (SEDs) during quiescent and active states. We analyze the relationships between different spectral indices, blazar classes, and activity states. We find (i) significantly steeper $gamma$-ray spectra of FSRQs than for BL Lacs during quiescent states, but a flattening of the spectra for FSRQs during active states while the BL Lacs show no significant change; (ii) a small difference of $alpha_X$ within each class between states, with BL Lac X-ray spectra significantly steeper than in FSRQs; (iii) a highly peaked distribution of X-ray spectral slopes of FSRQs at $sim-$0.60, but a very broad distribution of $alpha_X$ of BL Lacs during active states; (iv) flattening of the optical spectra of FSRQs during quiescent states, but no statistically significant change of $alpha_o$ of BL Lacs between states; and (v) a positive correlation between optical and $gamma$-ray spectral slopes of BL Lacs, with similar values of the slopes. We discuss the findings with respect to the relative prominence of different components of high-energy and optical emission as the flux state changes.
Recent population studies have shown that the variability Doppler factors can adequately describe blazars as a population. We use the flux density variations found within the extensive radio multi-wavelength datasets of the F-GAMMA program, a total o f 10 frequencies from 2.64 up to 142.33 GHz, in order to estimate the variability Doppler factors for 58 $gamma$-ray bright sources, for 20 of which no variability Doppler factor has been estimated before. We employ specifically designed algorithms in order to obtain a model for each flare at each frequency. We then identify each event and track its evolution through all the available frequencies for each source. This approach allows us to distinguish significant events producing flares from stochastic variability in blazar jets. It also allows us to effectively constrain the variability brightness temperature and hence the variability Doppler factor as well as provide error estimates. Our method can produce the most accurate (16% error on average) estimates in the literature to date.
Since its launch in April 2007, the AGILE satellite detected with its Gamma-Ray Imaging Detector (GRID) several blazars at high significance: 3C 279, 3C 454.3, PKS 1510-089, S5 0716+714, 3C 273, W Comae, Mrk 421 and PKS 0537-441. Moreover, AGILE was able both to rapidly respond to sudden changes in blazar activity state at other wavelengths and to alert other telescopes quickly in response to changes in the gamma-ray fluxes. Thus, we were able to obtain multiwavelength data from other observatories such as Spitzer, Swift, RXTE, Suzaku, INTEGRAL, MAGIC, VERITAS, as well as radio-to-optical coverage by means of the GASP Project of the WEBT and REM. This large multifrequency coverage gave us the opportunity to study the Spectral Energy Distribution of these sources from radio to gamma-rays energy bands and to investigate the different mechanisms responsible for their emission. We present an overview of the AGILE results on these gamma-ray blazars and the relative multifrequency data.
158 - Krzysztof Nalewajko 2012
I present a systematic study of gamma-ray flares in blazars. For this purpose, I propose a very simple and practical definition of a flare as a period of time, associated with a given flux peak, during which the flux is above half of the peak flux. I select a sample of 40 brightest gamma-ray flares observed by Fermi/LAT during the first 4 years of its mission. The sample is dominated by 4 blazars: 3C 454.3, PKS 1510-089, PKS 1222+216 and 3C 273. For each flare, I calculate a light curve and variations of the photon index. For the whole sample, I study the distributions of the peak flux, peak luminosity, duration, time asymmetry, average photon index and photon index scatter. I find that: 1) flares produced by 3C 454.3 are longer and have more complex light curves than those produced by other blazars; 2) flares shorter than 1.5 days in the source frame tend to be time-asymmetric with the flux peak preceding the flare midpoint. These differences can be largely attributed to a smaller viewing angle of 3C 454.3 as compared to other blazars. Intrinsically, the gamma-ray emitting regions in blazar jets may be structured and consist of several domains. I find no regularity in the spectral gamma-ray variations of flaring blazars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا