ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast and robust quantum computation with ionic Wigner crystals

103   0   0.0 ( 0 )
 نشر من قبل Antonio Negretti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a detailed analysis of the modulated-carrier quantum phase gate implemented with Wigner crystals of ions confined in Penning traps. We elaborate on a recent scheme, proposed by two of the authors, to engineer two-body interactions between ions in such crystals. We analyze for the first time the situation in which the cyclotron (w_c) and the crystal rotation (w_r) frequencies do not fulfill the condition w_c=2w_r. It is shown that even in the presence of the magnetic field in the rotating frame the many-body (classical) Hamiltonian describing small oscillations from the ion equilibrium positions can be recast in canonical form. As a consequence, we are able to demonstrate that fast and robust two-qubit gates are achievable within the current experimental limitations. Moreover, we describe a realization of the state-dependent sign-changing dipole forces needed to realize the investigated quantum computing scheme.



قيم البحث

اقرأ أيضاً

We describe a scheme of quantum computation with magic states on qubits for which contextuality is a necessary resource possessed by the magic states. More generally, we establish contextuality as a necessary resource for all schemes of quantum compu tation with magic states on qubits that satisfy three simple postulates. Furthermore, we identify stringent consistency conditions on such computational schemes, revealing the general structure by which negativity of Wigner functions, hardness of classical simulation of the computation, and contextuality are connected.
We describe a universal scheme of quantum computation by state injection on rebits (states with real density matrices). For this scheme, we establish contextuality and Wigner function negativity as computational resources, extending results of [M. Ho ward et al., Nature 510, 351--355 (2014)] to two-level systems. For this purpose, we define a Wigner function suited to systems of $n$ rebits, and prove a corresponding discrete Hudsons theorem. We introduce contextuality witnesses for rebit states, and discuss the compatibility of our result with state-independent contextuality.
We study the efficiency of quantum algorithms which aim at obtaining phase space distribution functions of quantum systems. Wigner and Husimi functions are considered. Different quantum algorithms are envisioned to build these functions, and compared with the classical computation. Different procedures to extract more efficiently information from the final wave function of these algorithms are studied, including coarse-grained measurements, amplitude amplification and measure of wavelet-transformed wave function. The algorithms are analyzed and numerically tested on a complex quantum system showing different behavior depending on parameters, namely the kicked rotator. The results for the Wigner function show in particular that the use of the quantum wavelet transform gives a polynomial gain over classical computation. For the Husimi distribution, the gain is much larger than for the Wigner function, and is bigger with the help of amplitude amplification and wavelet transforms. We also apply the same set of techniques to the analysis of real images. The results show that the use of the quantum wavelet transform allows to lower dramatically the number of measurements needed, but at the cost of a large loss of information.
236 - Daniel Nagaj 2009
We present two universal models of quantum computation with a time-independent, frustration-free Hamiltonian. The first construction uses 3-local (qubit) projectors, and the second one requires only 2-local qubit-qutrit projectors. We build on Feynma ns Hamiltonian computer idea and use a railroad-switch type clock register. The resources required to simulate a quantum circuit with L gates in this model are O(L) small-dimensional quantum systems (qubits or qutrits), a time-independent Hamiltonian composed of O(L) local, constant norm, projector terms, the possibility to prepare computational basis product states, a running time O(L log^2 L), and the possibility to measure a few qubits in the computational basis. Our models also give a simplified proof of the universality of 3-local Adiabatic Quantum Computation.
91 - Stephen P. Jordan 2017
One version of the energy-time uncertainty principle states that the minimum time $T_{perp}$ for a quantum system to evolve from a given state to any orthogonal state is $h/(4 Delta E)$ where $Delta E$ is the energy uncertainty. A related bound calle d the Margolus-Levitin theorem states that $T_{perp} geq h/(2 E)$ where E is the expectation value of energy and the ground energy is taken to be zero. Many subsequent works have interpreted $T_{perp}$ as defining a minimal time for an elementary computational operation and correspondingly a fundamental limit on clock speed determined by a systems energy. Here we present local time-independent Hamiltonians in which computational clock speed becomes arbitrarily large relative to E and $Delta E$ as the number of computational steps goes to infinity. We argue that energy considerations alone are not sufficient to obtain an upper bound on computational speed, and that additional physical assumptions such as limits to information density and information transmission speed are necessary to obtain such a bound.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا