ﻻ يوجد ملخص باللغة العربية
We theoretically study the single particle Green function of a three dimensional disordered Weyl semimetal using a combination of techniques. These include analytic $T$-matrix and renormalization group methods with complementary regimes of validity, and an exact numerical approach based on the kernel polynomial technique. We show that at any nonzero disorder, Weyl excitations are not ballistic: they instead have a nonzero linewidth that for weak short-range disorder arises from non-perturbative resonant impurity scattering. Perturbative approaches find a quantum critical point between a semimetal and a metal at a finite disorder strength, but this transition is avoided due to nonperturbative effects. At moderate disorder strength and intermediate energies the avoided quantum critical point renormalizes the scaling of single particle properties. In this regime we compute numerically the anomalous dimension of the fermion field and find $eta= 0.13 pm 0.04$, which agrees well with a renormalization group analysis ($eta= 0.125$). Our predictions can be directly tested by ARPES and STM measurements in samples dominated by neutral impurities.
The gapless Bogoliubov-de Gennes (BdG) quasiparticles of a clean three dimensional spinless $p_x+ip_y$ superconductor provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions in class D of the Altland-Zirnbauer
Disorder in Weyl semimetals and superconductors is surprisingly subtle, attracting attention and competing theories in recent years. In this brief review, we discuss the current theoretical understanding of the effects of short-ranged, quenched disor
We numerically study the effect of short ranged potential disorder on massless noninteracting three-dimensional Dirac and Weyl fermions, with a focus on the question of the proposed quantum critical point separating the semimetal and diffusive metal
We study the properties of the avoided or hidden quantum critical point (AQCP) in three dimensional Dirac and Weyl semi-metals in the presence of short range potential disorder. By computing the averaged density of states (along with its second and f
In a recent publication [Phys. Rev. Lett. 97, 227402 (2006), cond-mat/0611411], it has been demonstrated numerically that a long-range disorder potential in semiconductor quantum wells can be reconstructed reliably via single-photon interferometry of