ﻻ يوجد ملخص باللغة العربية
The multipole expansion is a key tool in the study of light-matter interactions. All the information about the radiation of and coupling to electromagnetic fields of a given charge-density distribution is condensed into few numbers: The multipole moments of the source. These numbers are frequently computed with expressions obtained after the long-wavelength approximation. Here, we derive exact expressions for the multipole moments of dynamic sources that resemble in their simplicity their approximate counterparts. We validate our new expressions against analytical results for a spherical source, and then use them to calculate the induced moments for some selected sources with a non-trivial shape. The comparison of the results to those obtained with approximate expressions shows a considerable disagreement even for sources of subwavelength size. Our expressions are relevant for any scientific area dealing with the interaction between the electromagnetic field and material systems.
Based on the relation between a plane phased array and plane waves we show that a spherical current layer or a current sphere proportional to a multipole electric field and situated in a uniform medium generates the same multipole field in all space.
We consider the classical double copy, that relates solutions of biadjoint scalar, gauge and gravity theories. Using a recently developed twistor expression of this idea, we use well-established techniques to show that the multipole moments of arbitr
We calculate the charge quadrupole and magnetic octupole moments of baryons using a group theoretical approach based on broken SU(6) spin-flavor symmetry. The latter is an approximate symmetry of the QCD Lagrangian which becomes exact in the large co
We investigate the response of the bound state structure of a two-boson system, within a Yukawa model with a scalar boson exchange, to the inclusion of the cross-ladder contribution to the ladder kernel of the Bethe-Salpeter equation. The equation is
Sources of long wavelength radiation are naturally described by an effective field theory (EFT) which takes the form of a multipole expansion. Its action is given by a derivative expansion where higher order terms are suppressed by powers of the rati