ﻻ يوجد ملخص باللغة العربية
Sources of long wavelength radiation are naturally described by an effective field theory (EFT) which takes the form of a multipole expansion. Its action is given by a derivative expansion where higher order terms are suppressed by powers of the ratio of the size of the source over the wavelength. In order to determine the Wilson coefficients of the EFT, i.e. the multipole moments, one needs the mapping between a linear source term action and the multipole expansion form of the action of the EFT. In this paper we perform the multipole expansion to all orders by Taylor expanding the field in the source term and then decomposing the action into symmetric trace free tensors which form irreducible representations of the rotation group. We work at the level of the action, and we obtain the action to all orders in the multipole expansion and the exact expressions for the multipole moments for a scalar field, electromagnetism and linearized gravity. Our results for the latter two cases are manifestly gauge invariant. We also give expressions for the energy flux and the (gauge dependent) radiation field to all orders in the multipole expansion. The results for linearized gravity are a component of the EFT framework NRGR and will greatly simplify future calculations of gravitational wave observables in the radiation sector of NRGR.
We transform the metric of an isolated matter source in the multipolar post-Minkowskian approximation from harmonic (de Donder) coordinates to radiative Newman-Unti (NU) coordinates. To linearized order, we obtain the NU metric as a functional of the
General relativity with fermions has two independent symmetries: general coordinate invariance and local Lorentz invariance. General coordinate invariance is implemented by the Levi-Civita connection and by Cartans tetrads both of which have as their
It is known that the Cardassian universe is successful in describing the accelerated expansion of the universe, but its dynamical equations are hard to get from the action principle. In this paper, we establish the connection between the Cardassian u
In second order perturbation theory different definitions are known of gauge invariant perturbations in single field inflationary models. Consequently the corresponding gauge invariant cubic actions do not have the same form. Here we show that the cu
We compute the effect of scattering gravitational radiation off the static background curvature, up to second order in Newton constant, known in literature as tail and tail-of-tail processes, for generic electric and magnetic multipoles. Starting fro