ﻻ يوجد ملخص باللغة العربية
Conformal symmetry and color confinement in the infrared regime of QCD are interpreted by means of a conjectured deSitter $dS_4$ geometry of the internal space-time of hadrons, an assumption inspired by the hypothesis on deSitter special relativity. Within such a scenario, the interactions involving the virtual gluon- and constituent quark degrees of freedom of hadrons are deduced from the Green functions of Laplace operators on the $dS_4$ geodesics. Then the conformal symmetry of QCD emerges as a direct consequence of the conformal symmetry of the $dS_4$ space-time, while the color confinement, understood as colorlessness of hadrons, appears as a consequence of the inevitable charge neutrality of the unique closed space-like geodesic on this space, the three dimensional hyper-sphere $S^3$, on which the hadrons constituents are conjectured to reside when near rest frame. Mesons are now modelled as quarkish color-anticolor dipoles, whose free quantum motions on the aforementioned $S^3$ geodesic are perturbed by a potential generated by a gluon--anti-gluon color dipole. The potential predicted presents itself as the color charge analogue to the curved Coulomb potential, i.e. to the electric potential that defines a consistent electrostatic theory on a hyper-spherical surface. The advantage of this method is that it allows to establish a direct relationship of the potential parameters to the fundamental constants of QCD. We apply the model to the description of the spectra of the $a_1$ and $f_1$ mesons, and the pion electric charge form factor, finding fair agreement with data.
We aim to investigate the theory of Lorentz violation with an invariant minimum speed so-called Symmetrical Special Relativity (SSR) from the viewpoint of its metric. Thus we should explore the nature of SSR-metric in order to understand the origin o
This Letter, i.e. for the first time, proves that a general invariant velocity is originated from the principle of special relativity, namely, discovers the origin of the general invariant velocity, and when the general invariant velocity is taken as
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincare special relativity is no longer valid and must be replaced by a de Si
The properties of Lorentz transformations in de Sitter relativity are studied. It is shown that, in addition to leaving invariant the velocity of light, they also leave invariant the length-scale related to the curvature of the de Sitter spacetime. T
We study a two dimensional dilaton gravity system, recently examined by Almheiri and Polchinski, which describes near extremal black holes, or more generally, nearly $AdS_2$ spacetimes. The asymptotic symmetries of $AdS_2$ are all the time reparametr