ترغب بنشر مسار تعليمي؟ اضغط هنا

Transport through a Majorana island: strong tunneling regime

301   0   0.0 ( 0 )
 نشر من قبل Roman Lutchyn
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the presence of Rashba spin-orbit coupling, magnetic field can drive a proximitized nanowire into a topological superconducting phase. We study transport properties of such nanowires in the Coulomb blockade regime. The associated with the topological superconductivity Majorana modes significantly modify transport and lead to single-electron coherent transmission through the nanowire - a non-local signature of topological superconductivity. In this work, we focus on the case of strong hybridization of the Majorana modes with the normal leads. The induced by hybridization broadening of the Majorana zero-energy states competes with the charging energy, leading to a considerable modification of the Coulomb blockade in a nanowire contacted by two normal leads. We evaluate the two-terminal conductance as a function of the gate voltage, junctions transmission coefficients, the geometric capacitance of and the induced superconducting gap in the nanowire.



قيم البحث

اقرأ أيضاً

In flat bands, superconductivity can lead to surprising transport effects. The superfluid mobility, in the form of the superfluid weight $D_s$, does not draw from the curvature of the band but has a purely band-geometric origin. In a mean-field descr iption, a non-zero Chern number or fragile topology sets a lower bound for $D_s$, which, via the Berezinskii-Kosterlitz-Thouless mechanism, might explain the relatively high superconducting transition temperature measured in magic-angle twisted bilayer graphene (MATBG). For fragile topology, relevant for the bilayer system, the fate of this bound for finite temperature and beyond the mean-field approximation remained, however, unclear. Here, we use numerically exact Monte Carlo simulations to study an attractive Hubbard model in flat bands with topological properties akin to those of MATBG. We find a superconducting phase transition with a critical temperature that scales linearly with the interaction strength. We then investigate the robustness of the superconducting state to the addition of trivial bands that may or may not trivialize the fragile topology. Our results substantiate the validity of the topological bound beyond the mean-field regime and further stress the importance of fragile topology for flat-band superconductivity.
We study multiband semiconducting nanowires proximity-coupled with an s-wave superconductor and calculate the topological phase diagram as a function of the chemical potential and magnetic field. The non-trivial topological state corresponds to a sup erconducting phase supporting an odd number of pairs of Majorana modes localized at the ends of the wire, whereas the non-topological state corresponds to a superconducting phase with no Majoranas or with an even number of pairs of Majorana modes. Our key finding is that multiband occupancy not only lifts the stringent constraint of one-dimensionality, but also allows having higher carrier density in the nanowire. Consequently, multiband nanowires are better-suited for stabilizing the topological superconducting phase and for observing the Majorana physics. We present a detailed study of the parameter space for multiband semiconductor nanowires focusing on understanding the key experimental conditions required for the realization and detection of Majorana fermions in solid-state systems. We include various sources of disorder and characterize their effects on the stability of the topological phase. Finally, we calculate the local density of states as well as the differential tunneling conductance as functions of external parameters and predict the experimental signatures that would establish the existence of emergent Majorana zero-energy modes in solid-state systems.
We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coup ling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and orbital Rashba fields. The competition of symmetric and antisymmetric spin-orbit coupling remarkably leads to a misalignment of the spin and orbital moments transverse to the orbital Rashba fields, whose manifestation is essentially orbital dependent. The behavior of the spin-orbital polarization along the applied Zeeman field reflects the presence of multiple Fermi points with inequivalent orbital character in the normal state. Additionally, the response to variation of the electronic parameters related with the degree of spin-orbital entanglement leads to distinctive evolution of the spin-orbital polarization of the MBSs. These findings unveil novel paths to single-out hallmarks relevant for the experimental detection of MBSs.
Majorana zero modes are leading candidates for topological quantum computation due to non-local qubit encoding and non-abelian exchange statistics. Spatially separated Majorana modes are expected to allow phase-coherent single-electron transport thro ugh a topological superconducting island via a mechanism referred to as teleportation. Here we experimentally investigate such a system by patterning an elongated epitaxial InAs-Al island embedded in an Aharonov-Bohm interferometer. With increasing parallel magnetic field, a discrete sub-gap state in the island is lowered to zero energy yielding persistent 1e-periodic Coulomb blockade conductance peaks (e is the elementary charge). In this condition, conductance through the interferometer is observed to oscillate in a perpendicular magnetic field with a flux period of h/e (h is Plancks constant), indicating coherent transport of single electrons through the islands, a signature of electron teleportation via Majorana modes, could also be observed, suggesting additional non-Majorana mechanisms for 1e transport through these moderately short wires.
We present the results of theoretical study of Current-Phase Relations (CPR) in Josephson junctions of SIsFS type, where S is a bulk superconductor and IsF is a complex weak link consisting of a superconducting film s, a metallic ferromagnet F and an insulating barrier I. We calculate the relationship between Josephson current and phase difference. At temperatures close to critical, calculations are performed analytically in the frame of the Ginsburg-Landau equations. At low temperatures numerical method is developed to solve selfconsistently the Usadel equations in the structure. We demonstrate that SIsFS junctions have several distinct regimes of supercurrent transport and we examine spatial distributions of the pair potential across the structure in different regimes. We study the crossover between these regimes which is caused by shifting the location of a weak link from the tunnel barrier I to the F-layer. We show that strong deviations of the CPR from sinusoidal shape occur even in a vicinity of Tc, and these deviations are strongest in the crossover regime. We demonstrate the existence of temperature-induced crossover between 0 and pi states in the contact and show that smoothness of this transition strongly depends on the CPR shape.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا