ﻻ يوجد ملخص باللغة العربية
We investigate a paradigmatic case of topological superconductivity in a one-dimensional nanowire with $d-$orbitals and a strong interplay of spin-orbital degrees of freedom due to the competition of orbital Rashba interaction, atomic spin-orbit coupling, and structural distortions. We demonstrate that the resulting electronic structure exhibits an orbital dependent magnetic anisotropy which affects the topological phase diagram and the character of the Majorana bound states (MBSs). The inspection of the electronic component of the MBSs reveals that the spin-orbital polarization generally occurs along the direction of the applied Zeeeman magnetic field, and transverse to the magnetic and orbital Rashba fields. The competition of symmetric and antisymmetric spin-orbit coupling remarkably leads to a misalignment of the spin and orbital moments transverse to the orbital Rashba fields, whose manifestation is essentially orbital dependent. The behavior of the spin-orbital polarization along the applied Zeeman field reflects the presence of multiple Fermi points with inequivalent orbital character in the normal state. Additionally, the response to variation of the electronic parameters related with the degree of spin-orbital entanglement leads to distinctive evolution of the spin-orbital polarization of the MBSs. These findings unveil novel paths to single-out hallmarks relevant for the experimental detection of MBSs.
We study multiband semiconducting nanowires proximity-coupled with an s-wave superconductor and calculate the topological phase diagram as a function of the chemical potential and magnetic field. The non-trivial topological state corresponds to a sup
We present a study of Andreev Quantum Dots (QDots) fabricated with small-diameter (30 nm) Si-doped InAs nanowires where the Fermi level can be tuned across a mobility edge separating localized states from delocalized states. The transition to the ins
There has been experimental evidence for the Majorana zero modes (MZMs) in solid state systems, which are building blocks for potential topological quantum computing. It is important to design devices, in which MZMs are easy to manipulate and possess
We study the formation of Majorana states in superconductors using the Majorana polarization, which can locally evaluate the Majorana character of a given state. We introduce the definition of the Majorana polarization vector and the corresponding cr
We show that semiconductor nanowires coupled to an s-wave superconductor provide a playground to study effects of interactions between different topological superconducting phases supporting Majorana zero-energy modes. We consider quasi-one dimension