ﻻ يوجد ملخص باللغة العربية
We develop a theory of magnetoresistance of two-dimensional electron systems in a smooth disorder potential in the hydrodynamic regime. Our theory applies to two-dimensional semiconductor structures with strongly correlated carriers when the mean free path due to electron-electron collisions is sufficiently short. The dominant contribution to magnetoresistance arises from the modification of the flow pattern by the Lorentz force, rather than the magnetic field dependence of the kinetic coefficients of the electron liquid. The resulting magnetoresistance is positive and quadratic at weak fields. Although the resistivity is governed by both viscosity and thermal conductivity of the electron fluid, the magnetoresistance is controlled by the viscosity only. This enables extraction of viscosity of the electron liquid from magnetotransport measurements.
We report an universal behaviour of hopping transport in strongly interacting mesoscopic two-dimensional electron systems (2DES). In a certain window of background disorder, the resistivity at low perpendicular magnetic fields follows the expected re
At low temperatures, in very clean two-dimensional (2D) samples the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a vi
A hydrodynamic flow of electrons driven by an oscillating electric field is investigated. It is found that a double-peak profile of the electric current can appear. Such a profile originates from the interplay of viscous and inertial properties of th
We investigate the magnetotransport in large area graphene Hall bars epitaxially grown on silicon carbide. In the intermediate field regime between weak localization and Landau quantization the observed temperature-dependent parabolic magnetoresistiv
In this work we consider the hydrodynamic behavior of a coupled electron-phonon fluid, focusing on electronic transport under the conditions of strong phonon drag. This regime occurs when the rate of phonon equilibration due to e.g. umklapp scatterin