ﻻ يوجد ملخص باللغة العربية
We investigate the magnetotransport in large area graphene Hall bars epitaxially grown on silicon carbide. In the intermediate field regime between weak localization and Landau quantization the observed temperature-dependent parabolic magnetoresistivity (MR) is a manifestation of the electron-electron interaction (EEI). We can consistently describe the data with a model for diffusive (magneto)transport that also includes magnetic-field dependent effects originating from ballistic time scales. We find an excellent agreement between the experimentally observed temperature dependence of MR and the theory of EEI in the diffusive regime. We can further assign a temperature-driven crossover to the reduction of the multiplet modes contributing to EEI from 7 to 3 due to intervalley scattering. In addition, we find a temperature independent ballistic contribution to the MR in classically strong magnetic fields.
Electron-electron interactions play a critical role in many condensed matter phenomena, and it is tempting to find a way to control them by changing the interactions strength. One possible approach is to place a studied system in proximity of a metal
Generation of high harmonics in a monolayer graphene initiated by strong coherent radiation field, taking into account electron-electron Coulomb interaction is investigated. A microscopic theory describing the nonlinear optical response of graphene i
The effect of electron-electron interaction on the low-temperature conductivity of graphene is investigated experimentally. Unlike in other two-dimensional systems, the electron-electron interaction correction in graphene is sensitive to the details
We discuss valley current, which is carried by quasiparticles in graphene. We show that the valley current arises owing to a peculiar term in the electron-phonon collision integral that mixes the scalar and vector gauge-field-like vertices in the ele
We report on a theoretical study of the influence of electron-electron interactions on ARPES spectra in graphene that is based on the random-phase-approximation and on graphenes massless Dirac equation continuum model. We find that level repulsion be