ﻻ يوجد ملخص باللغة العربية
In this article we introduce and study uniform and non-uniform approximate lattices in locally compact second countable (lcsc) groups. These are approximate subgroups (in the sense of Tao) which simultaneously generalize lattices in lcsc group and mathematical quasi-crystals (a.k.a. Meyer sets) in lcsc abelian groups. We show that envelopes of strong approximate lattices are unimodular, and that approximate lattices in nilpotent groups are uniform. We also establish several results relating properties of approximate lattices and their envelopes. For example, we prove a version of the Milnor-Schwarz lemma for uniform approximate lattices in compactly-generated lcsc groups, which we then use to relate metric amenability of uniform approximate lattices to amenability of the envelope. Finally we extend a theorem of Kleiner and Leeb to show that the isometry groups of higher rank symmetric spaces of non-compact type are QI rigid with respect to finitely-generated approximate groups.
We introduce a notion of cocycle-induction for strong uniform approximate lattices in locally compact second countable groups and use it to relate (relative) Kazhdan- and Haagerup-type of approximate lattices to the corresponding properties of the am
We announce results on the structure of CAT(0) groups, CAT(0) lattices and of the underlying spaces. Our statements rely notably on a general study of the full isometry groups of proper CAT(0) spaces. Classical statements about Hadamard manifolds are
Starting with a lattice with an action of $mathbb{Z}$ or $mathbb{R}$, we build a Helly graph or an injective metric space. We deduce that the $ell^infty$ orthoscheme complex of any bounded graded lattice is injective. We also prove a Cartan-Hadamard
We show that the group of almost automorphisms of a d-regular tree does not admit lattices. As far as we know this is the first such example among (compactly generated) simple locally compact groups.
We develop the foundations of a geometric theory of countably-infinite approximate groups, extending work of Bjorklund and the second-named author. Our theory is based on the notion of a quasi-isometric quasi-action (qiqac) of an approximate group on