ترغب بنشر مسار تعليمي؟ اضغط هنا

Breakdown of the Goldreich-Julian Relation in a Neutron Star

47   0   0.0 ( 0 )
 نشر من قبل Denis Sob'yanin
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. N. Sobyanin




اسأل ChatGPT حول البحث

The electromagnetic field in a magnetized neutron star and the underlying volume charges and currents are found. A general case of a rigidly rotating neutron star with infinite conductivity, arbitrary distribution of the internal magnetic field, arbitrarily changing angular velocity, and arbitrary surface velocity less than the velocity of light is considered. Quaternions are used to describe rotation and determine the magnetic field. It is shown that the charge density is not equal to and can exceed significantly the common Goldreich-Julian density. Moreover, corrections to the magnetic field due to stellar rotation are zero. For a rotating neutron star, twisting magnetic field lines causes charge accumulation and current flows. This fact shows a possible link between changing internal magnetic field topology and observed activity of neutron stars.



قيم البحث

اقرأ أيضاً

The absorption of a high-energy photon from the external cosmic gamma-ray background in the inner neutron star magnetosphere triggers the generation of a secondary electron-positron plasma and gives rise to a lightning - a lengthening and simultaneou sly expanding plasma tube. It propagates along magnetic fields lines with a velocity close to the speed of light. The high electron-positron plasma generation rate leads to dynamical screening of the longitudinal electric field that is provided not by charge separation but by electric current growth in the lightning. The lightning radius is comparable to the polar cap radius of a radio pulsar. The number of electron-positron pairs produced in the lightning in its lifetime reaches 10^28. The density of the forming plasma is comparable to or even higher than that in the polar cap regions of ordinary pulsars. This suggests that the radio emission from individual lightnings can be observed. Since the formation time of the radio emission is limited by the lightning lifetime, the possible single short radio bursts may be associated with rotating radio transients (RRATs).
The production of electron-positron pairs in a vacuum neutron star magnetosphere is investigated for both low (compared to the Schwinger one) and high magnetic fields. The case of a strong longitudinal electric field where the produced electrons and positrons acquire a stationary Lorentz factor in a short time is considered. The source of electron-positron pairs has been calculated with allowance made for the pair production by curvature and synchrotron photons. Synchrotron photons are shown to make a major contribution to the total pair production rate in a weak magnetic field. At the same time, the contribution from bremsstrahlung photons may be neglected. The existence of a time delay due to the finiteness of the electron and positron acceleration time leads to a great reduction in the electron-positron plasma generation rate compared to the case of a zero time delay. The effective local source of electron-positron pairs has been constructed. It can be used in the hydrodynamic equations that describe the development of a cascade after the absorption of a photon from the cosmic gamma-ray background in a neutron star magnetosphere.
142 - Dany Page 2011
The supernova remnant Cassiopeia A contains the youngest known neutron star which is also the first one for which real time cooling has ever been observed. In order to explain the rapid cooling of this neutron star, we first present the fundamental p roperties of neutron stars that control their thermal evolution with emphasis on the neutrino emission processes and neutron/proton superfluidity/superconductivity. Equipped with these results, we present a scenario in which the observed cooling of the neutron star in Cassiopeia A is interpreted as being due to the recent onset of neutron superfluidity in the core of the star. The manner in which the earlier occurrence of proton superconductivity determines the observed rapidity of this neutron stars cooling is highlighted. This is the first direct evidence that superfluidity and superconductivity occur at supranuclear densities within neutron stars.
122 - X. Chen , W. Wang , Y. M. Tang 2021
Cyclotron line scattering features are detected in a few tens of X-ray pulsars (XRPs) and used as direct indicators of a strong magnetic field at the surface of accreting neutron stars (NSs). In a few cases, cyclotron lines are known to be variable w ith accretion luminosity of XRPs. It is accepted that the observed variations of cyclotron line scattering features are related to variations of geometry and dynamics of accretion flow above the magnetic poles of a NS. A positive correlation between the line centroid energy and luminosity is typical for sub-critical XRPs, where the accretion results in hot spots at the magnetic poles. The negative correlation was proposed to be a specific feature of bright super-critical XRPs, where radiation pressure supports accretion columns above the stellar surface. Cyclotron line in spectra of Be-transient X-ray pulsar GRO J1008-57 is detected at energies from $sim 75 -90$ keV, the highest observed energy of cyclotron line feature in XRPs. We report the peculiar relation of cyclotron line centroid energies with luminosity in GRO J1008-57 during the Type II outburst in August 2017 observed by Insight-HXMT. The cyclotron line energy was detected to be negatively correlated with the luminosity at $3.2times 10^{37},ergs<L<4.2times 10^{37},ergs$, and positively correlated at $Lgtrsim 5times 10^{37},ergs$. We speculate that the observed peculiar behavior of a cyclotron line would be due to variations of accretion channel geometry.
The study of how neutron stars cool over time can provide invaluable insights into fundamental physics such as the nuclear equation of state and superconductivity and superfluidity. A critical relation in neutron star cooling is the one between obser ved surface temperature and interior temperature. This relation is determined by the composition of the neutron star envelope and can be influenced by the process of diffusive nuclear burning (DNB). We calculate models of envelopes that include DNB and find that DNB can lead to a rapidly changing envelope composition which can be relevant for understanding the long-term cooling behavior of neutron stars. We also report on analysis of the latest temperature measurements of the young neutron star in the Cassiopeia A supernova remnant. The 13 Chandra observations over 18 years show that the neutron stars temperature is decreasing at a rate of 2-3 percent per decade, and this rapid cooling can be explained by the presence of a proton superconductor and neutron superfluid in the core of the star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا