ﻻ يوجد ملخص باللغة العربية
We present the detection of non-radial oscillations in a hot, helium-atmosphere white dwarf using 78.7 d of nearly uninterrupted photometry from the Kepler space telescope. With an effective temperature >30,000 K, PG 0112+104 becomes the hottest helium-atmosphere white dwarf known to pulsate. The rich oscillation spectrum of low-order g-modes includes clear patterns of rotational splittings from consecutive sequences of dipole and quadrupole modes, which can be used to probe the rotation rate with depth in this highly evolved stellar remnant. We also measure a surface rotation rate of 10.17404 hr from an apparent spot modulation in the K2 data. With two independent measures of rotation, PG 0112+104 provides a remarkable test of asteroseismic inference.
We have searched the Gaia DR2 catalogue for previously unknown hot white dwarfs in the direction of young open star clusters. The aim of this experiment was to try and extend the initial-final mass relation (IFMR) to somewhat higher masses, potential
The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Mosser et al. (2012)
We present the discovery of the first T dwarf + white dwarf binary system LSPM 1459+0857AB, confirmed through common proper motion and spectroscopy. The white dwarf is a high proper motion object from the LSPM catalogue that we confirm spectroscopica
We present some of the results of a survey aimed at exploring the asteroseismological potential of the newly-discovered carbon-atmosphere white dwarfs. We show that, in certains regions of parameter space, carbon-atmosphere white dwarfs may drive low
Up to 98% of all single stars will eventually become white dwarfs - stars that link the history and future evolution of the Galaxy, and whose previous evolution is engraved in their interiors. Those interiors can be studied using asteroseismology, ut