ﻻ يوجد ملخص باللغة العربية
The detection of mixed modes that are split by rotation in Kepler red giants has made it possible to probe the internal rotation profiles of these stars, which brings new constraints on the transport of angular momentum in stars. Mosser et al. (2012) have measured the rotation rates in the central regions of intermediate-mass core helium burning stars (secondary clump stars). Our aim was to exploit& the rotational splittings of mixed modes to estimate the amount of radial differential rotation in the interior of secondary clump stars using Kepler data, in order to place constraints on angular momentum transport in intermediate-mass stars. We selected a subsample of Kepler secondary clump stars with mixed modes that are clearly rotationally split. By applying a thorough statistical analysis, we showed that the splittings of both gravity-dominated modes (trapped in central regions) and p-dominated modes (trapped in the envelope) can be measured. We then used these splittings to estimate the amount of differential rotation by using inversion techniques and by applying a simplified approach based on asymptotic theory (Goupil et al. 2013). We obtained evidence for a weak radial differential rotation for six of the seven targets that were selected, with the central regions rotating $1.8pm0.3$ to $3.2pm1.0$ times faster than the envelope. The last target was found to be consistent with a solid-body rotation. This demonstrates that an efficient redistribution of angular momentum occurs after the end of the main sequence in the interior of intermediate-mass stars, either during the short-lived subgiant phase, or once He-burning has started in the core. In either case, this should bring constraints on the angular momentum transport mechanisms that are at work.
We study differential rotation in late-stage shell convection in a 3D hydrodynamic simulation of a rapidly rotating $16M_odot$ helium star with a particular focus on the convective oxygen shell. We find that the oxygen shell develops a quasi-stationa
The evolution of a zero metallicity 9 M_s star is computed, analyzed and compared with that of a solar metallicity star of identical ZAMS mass. Our computations range from the main sequence until the formation of a massive oxygen-neon white dwarf. Sp
Context. While rotation has a major impact on stellar structure and evolution, its effects are not well understood. Thanks to high- quality and long timebase photometric observations obtained with recent space missions, we are now able to study stell
Using patterns in the oscillation frequencies of a white dwarf observed by K2, we have measured the fastest rotation rate, 1.13(02) hr, of any isolated pulsating white dwarf known to date. Balmer-line fits to follow-up spectroscopy from the SOAR tele
About 1% of giant stars have been shown to have large surface Li abundances, which is unexpected according to standard stellar evolution models. Several scenarios for lithium production have been proposed, but it is still unclear why these Li-rich gi