ﻻ يوجد ملخص باللغة العربية
We extend our recent result for the spin-relaxation time due to acoustic electron-phonon scattering in degenerate bands with spin mixing [New J. Phys. 18, 023012 (2015)] to include interactions with optical phonons, and present a numerical evaluation of the spin-relaxation time for intraband hole-phonon scattering in the heavy-hole (HH) bands of bulk GaAs. Comparing our computed spin-relaxation times to the conventional Elliott-Yafet result quantitatively demonstrates that the latter underestimates the spin-relaxation time because it does not correctly describe how electron-phonon interactions change the (vector) spin expectation value of the single-particle states. We show that the conventional Elliott-Yafet spin relaxation time is a special case of our result for weak spin mixing.
We analyze spin-dependent carrier dynamics due to incoherent electron-phonon scattering, which is commonly referred to as Elliott-Yafet (EY) spin-relaxation mechanism. For this mechanism one usually distinguishes two contributions: (1) from the elect
The temperature dependence of the electron spin relaxation time in MgB2 is anomalous as it does not follow the temperature dependence of the resistivity above 150 K, it has a maximum around 400 K, and it decreases for higher temperatures. This violat
We theoretically investigate a manipulation method of nonequilibrium spin accumulation in the paramagnetic normal metal of a spin pumping system, by using the spin precession motion combined with the spin diffusion transport. We demonstrate based on
The Fermi-surfaces and Elliott-Yafet spin-mixing parameter (EYP) of several elemental metals are studied by emph{ab initio} calculations. We focus first on the anisotropy of the EYP as a function of the direction of the spin-quantization axis [Phys.~
Uniaxial compressive strain along the [001] direction strongly suppresses the spin relaxation in silicon. When the strain level is large enough so that electrons are redistributed only in the two valleys along the strain axis, the dominant scattering