ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient sparse polynomial factoring using the Funnel heap

89   0   0.0 ( 0 )
 نشر من قبل Fatima Abu Salem
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is a comprehensive extension of Abu-Salem et al. (2015) that investigates the prowess of the Funnel Heap for implementing sums of products in the polytope method for factoring polynomials, when the polynomials are in sparse distributed representation. We exploit that the work and cache complexity of an Insert operation using Funnel Heap can be refined to de- pend on the rank of the inserted monomial product, where rank corresponds to its lifetime in Funnel Heap. By optimising on the pattern by which insertions and extractions occur during the Hensel lifting phase of the polytope method, we are able to obtain an adaptive Funnel Heap that minimises all of the work, cache, and space complexity of this phase. Additionally, we conduct a detailed empirical study confirming the superiority of Funnel Heap over the generic Binary Heap once swaps to external memory begin to take place. We demonstrate that Funnel Heap is a more efficient merger than the cache oblivious k-merger, which fails to achieve its optimal (and amortised) cache complexity when used for performing sums of products. This provides an empirical proof of concept that the overlapping approach for perform- ing sums of products using one global Funnel Heap is more suited than the serialised approach, even when the latter uses the best merging structures available.



قيم البحث

اقرأ أيضاً

96 - Vasileios Nakos 2019
In the sparse polynomial multiplication problem, one is asked to multiply two sparse polynomials f and g in time that is proportional to the size of the input plus the size of the output. The polynomials are given via lists of their coefficients F an d G, respectively. Cole and Hariharan (STOC 02) have given a nearly optimal algorithm when the coefficients are positive, and Arnold and Roche (ISSAC 15) devised an algorithm running in time proportional to the structural sparsity of the product, i.e. the set supp(F)+supp(G). The latter algorithm is particularly efficient when there not too many cancellations of coefficients in the product. In this work we give a clean, nearly optimal algorithm for the sparse polynomial multiplication problem.
We present a probabilistic algorithm to compute the product of two univariate sparse polynomials over a field with a number of bit operations that is quasi-linear in the size of the input and the output. Our algorithm works for any field of character istic zero or larger than the degree. We mainly rely on sparse interpolation and on a new algorithm for verifying a sparse product that has also a quasi-linear time complexity. Using Kronecker substitution techniques we extend our result to the multivariate case.
We present randomized algorithms to compute the sumset (Minkowski sum) of two integer sets, and to multiply two univariate integer polynomials given by sparse representations. Our algorithm for sumset has cost softly linear in the combined size of th e inputs and output. This is used as part of our sparse multiplication algorithm, whose cost is softly linear in the combined size of the inputs, output, and the sumset of the supports of the inputs. As a subroutine, we present a new method for computing the coefficients of a sparse polynomial, given a set containing its support. Our multiplication algorithm extends to multivariate Laurent polynomials over finite fields and rational numbers. Our techniques are based on sparse interpolation algorithms and results from analytic number theory.
Given a straight-line program whose output is a polynomial function of the inputs, we present a new algorithm to compute a concise representation of that unknown function. Our algorithm can handle any case where the unknown function is a multivariate polynomial, with coefficients in an arbitrary finite field, and with a reasonable number of nonzero terms but possibly very large degree. It is competitive with previously known sparse interpolation algorithms that work over an arbitrary finite field, and provides an improvement when there are a large number of variables.
Computational problem certificates are additional data structures for each output, which can be used by a-possibly randomized-verification algorithm that proves the correctness of each output. In this paper, we give an algorithm that computes a certi ficate for the minimal polynomial of sparse or structured nxn matrices over an abstract field, of sufficiently large cardinality, whose Monte Carlo verification complexity requires a single matrix-vector multiplication and a linear number of extra field operations. We also propose a novel preconditioner that ensures irreducibility of the characteristic polynomial of the generically preconditioned matrix. This preconditioner takes linear time to be applied and uses only two random entries. We then combine these two techniques to give algorithms that compute certificates for the determinant, and thus for the characteristic polynomial, whose Monte Carlo verification complexity is therefore also linear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا