ﻻ يوجد ملخص باللغة العربية
Computational problem certificates are additional data structures for each output, which can be used by a-possibly randomized-verification algorithm that proves the correctness of each output. In this paper, we give an algorithm that computes a certificate for the minimal polynomial of sparse or structured nxn matrices over an abstract field, of sufficiently large cardinality, whose Monte Carlo verification complexity requires a single matrix-vector multiplication and a linear number of extra field operations. We also propose a novel preconditioner that ensures irreducibility of the characteristic polynomial of the generically preconditioned matrix. This preconditioner takes linear time to be applied and uses only two random entries. We then combine these two techniques to give algorithms that compute certificates for the determinant, and thus for the characteristic polynomial, whose Monte Carlo verification complexity is therefore also linear.
Certificates to a linear algebra computation are additional data structures for each output, which can be used by a-possibly randomized- verification algorithm that proves the correctness of each output. Wiede-manns algorithm projects the Krylov sequ
We present an algorithm for computing a Smith form with multipliers of a regular matrix polynomial over a field. This algorithm differs from previous ones in that it computes a local Smith form for each irreducible factor in the determinant separatel
We present randomized algorithms to compute the sumset (Minkowski sum) of two integer sets, and to multiply two univariate integer polynomials given by sparse representations. Our algorithm for sumset has cost softly linear in the combined size of th
This work is a comprehensive extension of Abu-Salem et al. (2015) that investigates the prowess of the Funnel Heap for implementing sums of products in the polytope method for factoring polynomials, when the polynomials are in sparse distributed repr
In the sparse polynomial multiplication problem, one is asked to multiply two sparse polynomials f and g in time that is proportional to the size of the input plus the size of the output. The polynomials are given via lists of their coefficients F an