ﻻ يوجد ملخص باللغة العربية
In this work we derive some general features of the redshift measured by radially moving observers in the black hole background. Let observer 1 cross the black hole horizon emitting of a photon while observer 2 crossing the same horizon later receives it. We show that if (i) the horizon is the outer one (event horizon) and (ii) it is nonextremal, received frequency is redshifted. This generalizes previous recent results in literature. For the inner horizon (like in the Reissner-Nordstr{o}m metric) the frequency is blueshifted. If the horizon is extremal, the frequency does not change. We derive explicit formulas describing the frequency shift in generalized Kruskal- and Lemaitre-like coordinates.
There is a compelling connection between equations of gravity near the black-hole horizon and fluid-equations. The correspondence suggests a novel way to unearth microscopic degrees of freedom of the event horizons. In this work, we construct a micro
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established
We consider dynamics of a quantum scalar field, minimally coupled to classical gravity, in the near-horizon region of a Schwarzschild black-hole. It is described by a static Klein-Gordon operator which in the near-horizon region reduces to a scale in
We consider static axially symmetric Einstein-Yang-Mills black holes in the isolated horizon formalism. The mass of these hairy black holes is related to the mass of the corresponding particle-like solutions by the horizon mass. The hairy black holes
In an ongoing effort to explore quantum effects on the interior geometry of black holes, we explicitly compute the semiclassical flux components $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ ($u$ and $v$ being the st