ﻻ يوجد ملخص باللغة العربية
In an ongoing effort to explore quantum effects on the interior geometry of black holes, we explicitly compute the semiclassical flux components $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ ($u$ and $v$ being the standard Eddington coordinates) of the renormalized stress-energy tensor for a minimally-coupled massless quantum scalar field, in the vicinity of the inner horizon (IH) of a Reissner-Nordstrom black hole. These two flux components seem to dominate the effect of backreaction in the IH vicinity; and furthermore, their regularization procedure reveals remarkable simplicity. We consider the Hartle-Hawking and Unruh quantum states, the latter corresponding to an evaporating black hole. In both quantum states, we compute $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ in the IH vicinity for a wide range of $Q/M$ values. We find that both $leftlangle T_{uu}rightrangle _{ren}$ and $leftlangle T_{vv}rightrangle _{ren}$ attain finite asymptotic values at the IH. Depending on $Q/M$, these asymptotic values are found to be either positive or negative (or vanishing in-between). Note that having a nonvanishing $leftlangle T_{vv}rightrangle _{ren}$ at the IH implies the formation of a curvature singularity on its ingoing section, the Cauchy horizon. Motivated by these findings, we also take initial steps in the exploration of the backreaction effect of these semiclassical fluxes on the near-IH geometry.
We analyze and compute the semiclassical stress-energy flux components, the outflux $langle T_{uu}rangle$ and the influx $langle T_{vv}rangle$ ($u$ and $v$ being the standard null Eddington coordinates), at the inner horizon (IH) of a Reissner-Nordst
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established
Despite of over thirty years of research of the black hole thermodynamics our understanding of the possible role played by the inner horizons of Reissner-Nordstrom and Kerr-Newman black holes in black hole thermodynamics is still somewhat incomplete:
We numerically investigate the interior of a four-dimensional, asymptotically flat, spherically symmetric charged black hole perturbed by a scalar field $Phi$. Previous study by Marolf and Ori indicated that late infalling observers will encounter an
We numerically compute the renormalized expectation value $langlehat{Phi}^{2}rangle_{ren}$ of a minimally-coupled massless quantum scalar field in the interior of a four-dimensional Reissner-Nordstrom black hole, in both the Hartle-Hawking and Unruh