ﻻ يوجد ملخص باللغة العربية
It has recently been demonstrated that black hole dynamics in a large number of dimensions $D$ reduces to the dynamics of a codimension one membrane propagating in flat space. In this paper we define a stress tensor and charge current on this membrane and explicitly determine these currents at low orders in the expansion in $frac{1}{D}$. We demonstrate that dynamical membrane equations of motion derived in earlier work are simply conservation equations for our stress tensor and charge current. Through the paper we focus on solutions of the membrane equations which vary on a time scale of order unity. Even though the charge current and stress tensor are not parametrically small in such solutions, we show that the radiation sourced by the corresponding membrane currents is generically of order $frac{1}{D^D}$. In this regime it follows that the `near horizon membrane degrees of freedom are decoupled from asymptotic flat space at every perturbative order in the $frac{1}{D}$ expansion. We also define an entropy current on the membrane and use the Hawking area theorem to demonstrate that the divergence of the entropy current is point wise non negative. We view this result as a local form of the second law of thermodynamics for membrane motion.
In the large D limit, and under certain circumstances, it has recently been demonstrated that black hole dynamics in asymptotically flat spacetime reduces to the dynamics of a non gravitational membrane propagating in flat D dimensional spacetime. We
It has recently been demonstrated that black hole dynamics at large D is dual to the motion of a probe membrane propagating in the background of a spacetime that solves Einsteins equations. The equation of motion of this membrane is determined by the
We study $SO(d+1)$ invariant solutions of the classical vacuum Einstein equations in $p+d+3$ dimensions. In the limit $d to infty$ with $p$ held fixed we construct a class of solutions labelled by the shape of a membrane (the event horizon), together
We study the evolution of black hole collisions and ultraspinning black hole instabilities in higher dimensions. These processes can be efficiently solved numerically in an effective theory in the limit of large number of dimensions D. We present evi
We find the equations of motion of membranes dual to the black holes in Einstein-Gauss-Bonnet (EGB) gravity to leading order in 1/D in the large D regime. We also find the metric solutions to the EGB equations to first subleading order in 1/D in term