ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray Binary Population of the Nearby Dwarf Starburst Galaxy IC 10: Variable and Transient X-ray Sources

210   0   0.0 ( 0 )
 نشر من قبل Silas Laycock
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have monitored the Cassiopeia dwarf galaxy (IC 10) in a series of 10 Chandra ACIS-S observations to capture its variable and transient X-ray source population, which is expected to be dominated by High Mass X-ray Binaries (HMXBs). We present a sample of 21 X-ray sources that are variable between observations at the 3 sigma level, from a catalog of 110 unique point sources. We find 4 transients (flux variability ratio greater than 10) and a further 8 objects with ratio > 5. The observations span years 2003 - 2010 and reach a limiting luminosity of >10$^{35}$ erg/s, providing sensitivity to X-ray binaries in IC 10 as well as flare stars in the foreground Milky Way. The nature of the variable sources is investigated from light-curves, X-ray spectra, energy quantiles, and optical counterparts. The purpose of this study is to discover the composition of the X-ray binary population in a young starburst environment. IC 10 provides a sharp contrast in stellar population age (<10 My) when compared to the Magellanic Clouds (40-200 My) where most of the known HMXBs reside. We find 10 strong HMXB candidates, 2 probable background Active Galactic Nuclei, 4 foreground flare-stars or active binaries, and 5 not yet classifiable sources. Complete classification of the sample requires optical spectroscopy for radial velocity analysis and deeper X-ray observations to obtain higher S/N spectra and search for pulsations. A catalog and supporting dataset are provided.



قيم البحث

اقرأ أيضاً

In young starburst galaxies, the X-ray population is expected to be dominated by the relics of the most massive and short-lived stars, black-hole and neutron-star high mass X-ray binaries (XRBs). In the closest such galaxy, IC 10, we have made a mult i-wavelength census of these objects. Employing a novel statistical correlation technique, we have matched our list of 110 X-ray point sources, derived from a decade of Chandra observations, against published photometric data. We report an 8 sigma correlation between the celestial coordinates of the two catalogs, with 42 X-ray sources having an optical counterpart. Applying an optical color-magnitude selection to isolate blue supergiant (SG) stars in IC 10, we find 16 matches. Both cases show a statistically significant overabundance versus the expectation value for chance alignments. The blue objects also exhibit systematically higher fx/fv ratios than other stars in the same magnitude range. Blue SG-XRBs include a major class of progenitors of double-degenerate binaries, hence their numbers are an important factor in modeling the rate of gravitational wave sources. We suggest that the anomalous features of the IC 10 stellar population are explained if the age of the IC 10 starburst is close to the time of the peak of interaction for massive binaries.
The massive black hole + Wolf-Rayet binary IC10 X-1 was observed in a series of 10 Chandra and 2 XMM-Newton observations spanning 2003-2012, showing consistent variability around 7 x10^37 erg/s, with a spectral hardening event in 2009. We phase-conne cted the entire light-curve by folding the photon arrival times on a series of trial periods spanning the known orbital period and its uncertainty, refining the X-ray period to P = 1.45175(1)d. The duration of minimum-flux in the X-ray eclipse is 5 hr which together with the optical radial velocity curve for the companion yields a radius for the eclipsing body of 8-10 Rsun for the allowed range of masses. The orbital separation of 18.5-22 Rsun then provides a limiting inclination i>63 degrees for total eclipses to occur. The eclipses are asymmetric (egress duration 0.9 hr) and show energy dependence, suggestive of an accretion-disk hotspot and corona. The eclipse is much (5X) wider than the 1.5-2 Rsun WR star, pointing to absorption/scattering in the dense wind of the WR star. The same is true of the close analog NGC 300 X-1. RV measurements of the He II [4686] line from the literature show a phase-shift with respect to the X-ray ephemeris such that the velocity does not pass through zero at mid-eclipse. The X-ray eclipse leads inferior conjunction of the RV curve by 90 degrees, so either the BH is being eclipsed by a trailing shock/plume, or the He II line does not directly trace the motion of the WR star and instead originates in a shadowed partially-ionized region of the stellar wind.
Ultraluminous X-ray sources (ULXs) are a class of accreting compact objects with X-ray luminosities above 1e39 erg/s. The ULX population counts several hundreds objects but only a minor fraction is well studied. Here we present a detailed analysis of all ULXs hosted in the galaxy NGC 7456. It was observed in X-rays only once in the past (in 2005) by XMM-Newton, but the observation was short and strongly affected by high background. In 2018, we obtained a new, deeper (~90 ks) XMM-Newton observation that allowed us to perform a detailed characterization of the ULXs hosted in the galaxy. ULX-1 and ULX-2, the two brightest objects (Lx~(6-10)e39 erg/s), have spectra that can be described by a two-thermal component model as often found in ULXs. ULX-1 shows also one order of magnitude in flux variability on short-term timescales (hundreds to thousand ks). The other sources (ULX-3 and ULX-4) show flux changes of at least an order of magnitude, and these objects may be candidate transient ULXs although longer X-ray monitoring or further studies are required to ascribe them to the ULX population. In addition, we found a previously undetected source that might be a new candidate ULX (labelled as ULX-5) with a luminosity of ~1e39 erg/s and hard power-law spectral shape, whose nature is still unclear and for which a background Active Galactic Nucleus cannot be excluded. We discuss the properties of all the ULXs in NGC 7456 within the framework of super-Eddington accretion onto stellar mass compact objects. Although no pulsations were detected, we cannot exclude that the sources host neutron stars.
We present results for two Ultraluminous X-ray Sources (ULXs), IC 342 X-1 and IC 342 X-2, using two epochs of XMM-Newton and NuSTAR observations separated by $sim$7 days. We observe little spectral or flux variability above 1 keV between epochs, with unabsorbed 0.3--30 keV luminosities being $1.04^{+0.08}_{-0.06} times 10^{40}$ erg s$^{-1}$ for IC 342 X-1 and $7.40pm0.20 times 10^{39}$ erg s$^{-1}$ for IC 342 X-2, so that both were observed in a similar, luminous state. Both sources have a high absorbing column in excess of the Galactic value. Neither source has a spectrum consistent with a black hole binary in low/hard state, and both ULXs exhibit strong curvature in their broadband X-ray spectra. This curvature rules out models that invoke a simple reflection-dominated spectrum with a broadened iron line and no cutoff in the illuminating power-law continuum. X-ray spectrum of IC 342 X-1 can be characterized by a soft disk-like black body component at low energies and a cool, optically thick Comptonization continuum at high energies, but unique physical interpretation of the spectral components remains challenging. The broadband spectrum of IC 342 X-2 can be fit by either a hot (3.8 keV) accretion disk, or a Comptonized continuum with no indication of a seed photon population. Although the seed photon component may be masked by soft excess emission unlikely to be associated with the binary system, combined with the high absorption column, it is more plausible that the broadband X-ray emission arises from a simple thin blackbody disk component. Secure identification of the origin of the spectral components in these sources will likely require broadband spectral variability studies.
325 - L. Ducci , M. Sasaki , F. Haberl 2013
We present the results obtained from the analysis of three XMM-Newton observations of M83. The aims of the paper are studying the X-ray source populations in M83 and calculating the X-ray luminosity functions of X-ray binaries for different regions o f the galaxy. We detected 189 sources in the XMM-Newton field of view in the energy range of 0.2-12 keV. We constrained their nature by means of spectral analysis, hardness ratios, studies of the X-ray variability, and cross-correlations with catalogues in X-ray, optical, infrared, and radio wavelengths. We identified and classified 12 background objects, five foreground stars, two X-ray binaries, one supernova remnant candidate, one super-soft source candidate and one ultra-luminous X-ray source. Among these sources, we classified for the first time three active galactic nuclei (AGN) candidates. We derived X-ray luminosity functions of the X-ray sources in M83 in the 2-10 keV energy range, within and outside the D_25 ellipse, correcting the total X-ray luminosity function for incompleteness and subtracting the AGN contribution. The X-ray luminosity function inside the D_25 ellipse is consistent with that previously observed by Chandra. The Kolmogorov-Smirnov test shows that the X-ray luminosity function of the outer disc and the AGN luminosity distribution are uncorrelated with a probability of about 99.3%. We also found that the X-ray sources detected outside the D_25 ellipse and the uniform spatial distribution of AGNs are spatially uncorrelated with a significance of 99.5%. We interpret these results as an indication that part of the observed X-ray sources are X-ray binaries in the outer disc of M83.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا