ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray source population study of the starburst galaxy M83 with XMM-Newton

322   0   0.0 ( 0 )
 نشر من قبل Lorenzo Ducci
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results obtained from the analysis of three XMM-Newton observations of M83. The aims of the paper are studying the X-ray source populations in M83 and calculating the X-ray luminosity functions of X-ray binaries for different regions of the galaxy. We detected 189 sources in the XMM-Newton field of view in the energy range of 0.2-12 keV. We constrained their nature by means of spectral analysis, hardness ratios, studies of the X-ray variability, and cross-correlations with catalogues in X-ray, optical, infrared, and radio wavelengths. We identified and classified 12 background objects, five foreground stars, two X-ray binaries, one supernova remnant candidate, one super-soft source candidate and one ultra-luminous X-ray source. Among these sources, we classified for the first time three active galactic nuclei (AGN) candidates. We derived X-ray luminosity functions of the X-ray sources in M83 in the 2-10 keV energy range, within and outside the D_25 ellipse, correcting the total X-ray luminosity function for incompleteness and subtracting the AGN contribution. The X-ray luminosity function inside the D_25 ellipse is consistent with that previously observed by Chandra. The Kolmogorov-Smirnov test shows that the X-ray luminosity function of the outer disc and the AGN luminosity distribution are uncorrelated with a probability of about 99.3%. We also found that the X-ray sources detected outside the D_25 ellipse and the uniform spatial distribution of AGNs are spatially uncorrelated with a significance of 99.5%. We interpret these results as an indication that part of the observed X-ray sources are X-ray binaries in the outer disc of M83.



قيم البحث

اقرأ أيضاً

We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by NuSTAR and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the bro adband coverage to 0.3-20 keV. The observations were carried out in two epochs separated by approximately 10 days, and showed little spectral variation, with an observed luminosity of Lx = (4.95+/-0.11)e39 erg/s. The broadband spectrum confirms the presence of a clear spectral downturn above 10 keV seen in some previous observations. This cutoff is inconsistent with the standard low/hard state seen in Galactic black hole binaries, as would be expected from an intermediate mass black hole accreting at significantly sub-Eddington rates given the observed luminosity. The continuum is apparently dominated by two optically thick thermal-like components, potentially accompanied by a faint high energy tail. The broadband spectrum is likely associated with an accretion disk that differs from a standard Shakura & Sunyaev thin disk.
We report the results of an optical campaign carried out by the XMM-Newton Survey Science Centre with the specific goal of identifying the brightest X-ray sources in the XMM-Newton Galactic Plane Survey of Hands et al. (2004). In addition to photomet ric and spectroscopic observations obtained at the ESO-VLT and ESO-3.6m, we used cross-correlations with the 2XMMi, USNO-B1.0, 2MASS and GLIMPSE catalogues to progress the identification process. Active coronae account for 16 of the 30 identified X-ray sources. Many of the identified hard X-ray sources are associated with massive stars emitting at intermediate X-ray luminosities of 10^32-34 erg/s. Among these are a very absorbed likely hyper-luminous star with X-ray/optical spectra and luminosities comparable with those of eta Carina, a new X-ray selected WN8 Wolf-Rayet star, a new Be/X-ray star belonging to the growing class of Gamma-Cas analogs and a possible supergiant X-ray binary of the kind discovered recently by INTEGRAL. One of the sources, XGPS-25 has a counterpart which exhibits HeII 4686 and Bowen CIII-NIII emission lines suggesting a quiescent or X-ray shielded Low Mass X-ray Binary, although its properties might also be consistent with a rare kind of cataclysmic variable (CV). We also report the discovery of three new CVs, one of which is a likely magnetic system. The soft (0.4-2.0 keV) band LogN-LogS curve is completely dominated by active stars in the flux range of 1x10^-13 to 1x10^-14 erg/cm2/s. In total, we are able to identify a large fraction of the hard (2-10 keV) X-ray sources in the flux range of 1x10^-12 to 1x10^-13 erg/cm2/s with Galactic objects at a rate consistent with that expected for the Galactic contribution only. (abridged)
120 - L. P. Jenkins 2003
We present the first results of an XMM-Newton EPIC observation of the luminous X-ray source population in the supergiant spiral galaxy M101. We have studied the properties of the fourteen most luminous sources, all of which have intrinsic X-ray lumin osities exceeding the Eddington limit for a 1.4 solar mass neutron star, with a subset in the ultraluminous X-ray source (ULX) regime. Eleven sources show evidence of short-term variability, and most vary by a factor of ~2-4 over a baseline of 11-24 yrs, providing strong evidence that these sources are accreting X-ray binary (XRB) systems. The sources show a variety of spectral shapes, with no apparent spectral distinction between those above and below the ULX threshold. Nine are well-fit with either simple absorbed disc blackbody/powerlaw models. However for three of the four sources best-fit with powerlaw models, we cannot exclude the disc blackbody fits and therefore conclude that, coupled with their high luminosities, eight out of nine single-component sources are possibly high state XRBs. The nuclear source has the only unambiguous powerlaw spectrum (photon index~2.3), which may be evidence for a low-luminosity AGN. The remaining five sources require at least two-component spectral fits. We have compared the spectral shapes of nine sources covered by both this observation and an archival 100ks Chandra observation of M101; the majority show behaviour typical of Galactic XRBs i.e. softening with increasing luminosity. We find no definitive spectral signatures to indicate that these sources contain neutron star primaries, and conclude that they are likely to be stellar-mass black hole XRBs, with black hole masses of ~2-23 solar masses if accreting at the Eddington limit (abridged).
We present a high-quality hard X-ray spectrum of the ultraluminous X-ray source (ULX) NGC 5643 X-1 measured with NuSTAR in May-June 2014. We have obtained this spectrum by carefully separating the signals from the ULX and from the active nucleus of i ts host galaxy NGC 5643 located 0.8 arcmin away. Together with long XMM-Newton observations performed in July 2009 and August 2014, the NuSTAR data confidently reveal a high-energy cutoff in the spectrum of NGC 5643 X-1 above ~10 keV, which is a characteristic signature of ULXs. The NuSTAR and XMM-Newton data are consistent with the source having a constant luminosity ~1.5E40 erg/s (0.2-12 keV) in all but the latest observation (August 2014) when it brightened to ~3E40 erg/s. This increase is associated with the dominant, hard spectral component (presumably collimated emission from the inner regions of a supercritical accretion disc), while an additional, soft component (with a temperature ~0.3 keV if described by multicolor disk emission), possibly associated with a massive wind outflowing from the disk, is also evident in the spectrum but does not exhibit significant variability.
We have extensively studied the broadband X-ray spectra of the source ESO~141--G055 using all available xmm{} and ustar{} observations. We detect a prominent soft excess below 2 keV, a narrow Fe line and a Compton hump (>10 keV). The origin of the s oft excess is still debated. We used two models to describe the soft excess: the blurred reflection from the ionized accretion disk and the intrinsic thermal Comptonisation model. We find that both of these models explain the soft excess equally well. We confirm that we do not detect any broad Fe line in the X-ray spectra of this source, although both the physical models prefer a maximally spinning black hole scenario (a$>$0.96). This may mean that either the broad Fe line is absent or blurred beyond detection. The Eddington rate of the source is estimated to be $lambda_{Edd} sim 0.31$. In the reflection model, the Compton hump has a contribution from both ionized and neutral reflection components. The neutral reflector which simultaneously describes the narrow Fe K$alpha$ and the Compton hump has a column density of $rm N_{H} geq 7times 10^{24} rm cm^{-2} $. In addition, we detect a partially covering ionized absorption with ionization parameter $log xi/rm erg cm s^{-1}$ = $0.1^{+0.1}_{-0.1}$ and column density $rm N_{H} =20.6^{+1.0}_{-1.0}times 10^{22} rm cm^{-2}$ with a covering factor of $0.21^{+0.01}_{-0.01}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا