ﻻ يوجد ملخص باللغة العربية
Filaments in Herschel molecular cloud images are found to exhibit a characteristic width. This finding is in tension with spatial power spectra of the data, which show no indication of this characteristic scale. We demonstrate that this discrepancy is a result of the methodology adopted for measuring filament widths. First, we perform the previously used analysis technique on artificial scale-free data, and obtain a peaked width distribution of filament-like structures. Next, we repeat the analysis on three Herschel maps and reproduce the narrow distribution of widths found in previous studies $-$ when considering the average width of each filament. However, the distribution of widths measured at all points along a filament spine is broader than the distribution of mean filament widths, indicating that the narrow spread (interpreted as a characteristic width) results from averaging. Furthermore, the width is found to vary significantly from one end of a filament to the other. Therefore, the previously identified peak at 0.1 pc cannot be understood as representing the typical width of filaments. We find an alternative explanation by modelling the observed width distribution as a truncated power-law distribution, sampled with uncertainties. The position of the peak is connected to the lower truncation scale and is likely set by the choice of parameters used in measuring filament widths. We conclude that a characteristic width of filaments is not supported by the available data.
The fragmentation of filaments in molecular clouds has attracted a lot of attention as there seems to be a relation between the evolution of filaments and star formation. The study of the fragmentation process has been motivated by simple analytical
One core goal of the Kepler mission was to determine the frequency of Earth-like planets that orbit Sun-like stars. Accurately estimating this planet occurrence rate requires both a well-vetted list of planets and a clear understanding of the stars s
For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiat
We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities,
We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much