ﻻ يوجد ملخص باللغة العربية
For many years feedback processes generated by OB-stars in molecular clouds, including expanding ionization fronts, stellar winds, or UV-radiation, have been proposed to trigger subsequent star formation. However, hydrodynamic models including radiation and gravity show that UV-illumination has little or no impact on the global dynamical evolution of the cloud. The Rosette molecular cloud, irradiated by the NGC2244 cluster, is a template region for triggered star-formation, and we investigated its spatial and density structure by applying a curvelet analysis, a filament-tracing algorithm (DisPerSE), and probability density functions (PDFs) on Herschel column density maps, obtained within the HOBYS key program. The analysis reveals not only the filamentary structure of the cloud but also that all known infrared clusters except one lie at junctions of filaments, as predicted by turbulence simulations. The PDFs of sub-regions in the cloud show systematic differences. The two UV-exposed regions have a double-peaked PDF we interprete as caused by shock compression. The deviations of the PDF from the log-normal shape typically associated with low- and high-mass star-forming regions at Av~3-4m and 8-10m, respectively, are found here within the very same cloud. This shows that there is no fundamental difference in the density structure of low- and high-mass star-forming regions. We conclude that star-formation in Rosette - and probably in high-mass star-forming clouds in general - is not globally triggered by the impact of UV-radiation. Moreover, star formation takes place in filaments that arose from the primordial turbulent structure built up during the formation of the cloud. Clusters form at filament mergers, but star formation can be locally induced in the direct interaction zone between an expanding HII--region and the molecular cloud.
We report on the filaments that develop self-consistently in a new numerical simulation of cloud formation by colliding flows. As in previous studies, the forming cloud begins to undergo gravitational collapse because it rapidly acquires a mass much
Using Spitzer Space Telescope and Chandra X-ray Observatory data, we identify YSOs in the Rosette Molecular Cloud (RMC). By being able to select cluster members and classify them into YSO types, we are able to track the progression of star formation
The Rosette molecular cloud is promoted as the archetype of a triggered star-formation site. This is mainly due to its morphology, because the central OB cluster NGC 2244 has blown a circular-shaped cavity into the cloud and the expanding HII-region
The Herschel OB young stellar objects survey (HOBYS) has observed the Rosette molecular cloud, providing an unprecedented view of its star formation activity. These new far-infrared data reveal a population of compact young stellar objects whose phys
Filaments in Herschel molecular cloud images are found to exhibit a characteristic width. This finding is in tension with spatial power spectra of the data, which show no indication of this characteristic scale. We demonstrate that this discrepancy i