ترغب بنشر مسار تعليمي؟ اضغط هنا

Photovoltaic effect in BiFeO3/TiO2 heterostructures tuned with epitaxial strain and an electric field

188   0   0.0 ( 0 )
 نشر من قبل Hong-Jian Feng
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The photovoltaic effect in the BiFeO3/TiO2 heterostructures can be tuned by epitaxial strain and an electric field in the visible-light region which is manifested by the enhancement of absorption activity in the heterojunction under tensile strain and an electric field based on the first-principles calculations. It is suggested that there are coupling between photon, spin carrier, charge, orbital, and lattice in the interface of the bilayer film which makes the heterojunction an intriguing candidate towards fabricating the multifunctional photoelectric devices based on spintronics. The microscopic mechanism involved in the heterostruces is related deeply with the spin transfer and charge rearrangement between the Fe 3d and O 2p orbitals in the vicinity of the interface.



قيم البحث

اقرأ أيضاً

235 - Zuhuang Chen , Xi Zou , Wei Ren 2012
Epitaxial strain plays an important role in determining physical properties of perovskite ferroelectric oxide thin films. However, it is very challenging to directly measure properties such as polarization in ultrathin strained films using traditiona l sandwich capacitor devices, because of high leakage current. We employed a planar electrode device with different crystallographical orientations between electrodes along different electric field orientation to directly measure the in-plane polarization-electric field (P-E) hysteresis loops in fully strained thin films. At high misfit strains such as -4.4%, the pure Tetrogonal-like phase is obtained and its polarization vector is constrained to lie in the (010) plane with a significantly large in-plane component, ~44 {mu}C/cm2. First-principle calculations are carried out in parallel, and provide a good agreement with the experimental results. Our results pave the way to design in-plane devices based on T-like BFO and the strategy proposed here can be expanded to study all other similar strained multiferroic ultrathin films.
Electric-field (E-field) control of magnetism enabled by multiferroics has the potential to revolutionize the landscape of present memory devices plagued with high energy dissipation. To date, this E-field controlled multiferroic scheme at room tempe rature has only been demonstrated using BiFeO3 (BFO) films grown on DyScO3 (refs 1 and 2), a unique and expensive substrate, which gives rise to a particular ferroelectric domain pattern in BFO. Here, we demonstrate reversible E-field-induced switching of the magnetic state of the Co layer in Co/BFO (001) thin film heterostructures fabricated on SrTiO3 substrates. The angular dependence of the coercivity and the remanent magnetization of the Co layer indicates that its easy axis reversibly switches by 45{deg} back and forth between the (100) and the (110) crystallographic directions of SrTiO3 as a result of alternating application of positive and negative voltage pulses on BFO. The coercivity of the Co layer exhibits a hysteretic behavior between two states as a function of voltage. To explain the observation, we have also measured the exact canting angle of the antiferromagnetic G-type domain in BFO films for the first time using neutron diffraction. These results suggest a pathway to integrating BFO-based devices on Si wafers for implementing low power consumption and non-volatile magnetoelectronic devices.
The limitation of commercially available single-crystal substrates and the lack of continuous strain tunability preclude the ability to take full advantage of strain engineering for further exploring novel properties and exhaustively studying fundame ntal physics in complex oxides. Here we report an approach for imposing continuously tunable, large epitaxial strain in oxide heterostructures beyond substrate limitations by inserting an interface layer through tailoring its gradual strain relaxation. Taking BiFeO3 as a model system, we demonstrate that the introduction of an ultrathin interface layer allows the creation of a desired strain that can induce phase transition and stabilize a new metastable super-tetragonal phase as well as morphotropic phase boundaries overcoming substrate limitations. Furthermore, continuously tunable strain from tension to compression can be generated by precisely adjusting the thickness of the interface layer, leading to the first achievement of continuous O-R-T phase transition in BiFeO3 on a single substrate. This proposed route could be extended to other oxide heterostructures, providing a platform for creating exotic phases and emergent phenomena.
The magnetic-field-dependent spin ordering of strained BiFeO3 films is determined using nuclear resonant scattering and Raman spectroscopy. The critical field required to destroy the cycloidal modulation of the Fe spins is found to be significantly l ower than in the bulk, with appealing implications for field-controlled spintronic and magnonic devices.
240 - Hong-Jian Feng 2013
First-principles density-functional theory calculations show switching magnetization by 90 degree can be achieved in ultrathin BFO film by applying external electric-field. Up-spin carriers appear to the surface with positive field while down-spin on es to the negative field surface, arising from the redistribution of Fe-t2g orbital. The half-metallic behavior of Fe-3d states in the surface of R phase film makes it a promising candidate for AFM/FM bilayer heterostructure possessing electric-field tunable FM magnetization reversal and opens a new way towards designing spintronic multiferroics. The interface exchange-bias effect in this BFO/FM bilayer is mainly driven by the Fe-t2g orbital reconstruction, as well as spin transferring and rearrangement.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا