ﻻ يوجد ملخص باللغة العربية
A technique is proposed to cool Fermi gases to the regime of quantum degeneracy based on the expected inhibition of spontaneous emission due to the Pauli principle. The reduction of the linewidth for spontaneous emission originates a corresponding reduction of the Doppler temperature, which under specific conditions may give rise to a runaway process through which fermions are progressively cooled. The approach requires a combination of a magneto-optical trap as a cooling system and an optical dipole trap to enhance quantum degeneracy. This results in expected Fermi degeneracy factors $T/T_F$ comparable to the lowest values recently achieved, with potential for a direct implementation in optical lattices. The experimental demonstration of this technique should also indirectly provide a macroscopic manifestation of the Pauli exclusion principle at the atomic physics level.
We investigate a species selective cooling process of a trapped $mathrm{SU}(N)$ Fermi gas using entropy redistribution during adiabatic loading of an optical lattice. Using high-temperature expansion of the Hubbard model, we show that when a subset $
From the study of long-range-interacting systems to the simulation of gauge fields, open-shell Lanthanide atoms with their large magnetic moment and narrow optical transitions open novel directions in the field of ultracold quantum gases. As for othe
We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physical motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant p
Scale invariance emerges and plays an important role in strongly correlated many-body systems such as critical regimes nearby phase transitions and the unitary Fermi gases. Discrete scaling symmetry also manifests itself in quantum few-body systems s
Understanding strongly correlated phases of matter, from the quark-gluon plasma to neutron stars, and in particular the dynamics of such systems, $e.g.$ following a Hamiltonian quench, poses a fundamental challenge in modern physics. Ultracold atomic