ﻻ يوجد ملخص باللغة العربية
We consider the following basic problem: given an $n$-variate degree-$d$ homogeneous polynomial $f$ with real coefficients, compute a unit vector $x in mathbb{R}^n$ that maximizes $|f(x)|$. Besides its fundamental nature, this problem arises in diverse contexts ranging from tensor and operator norms to graph expansion to quantum information theory. The homogeneous degree $2$ case is efficiently solvable as it corresponds to computing the spectral norm of an associated matrix, but the higher degree case is NP-hard. We give approximation algorithms for this problem that offer a trade-off between the approximation ratio and running time: in $n^{O(q)}$ time, we get an approximation within factor $O_d((n/q)^{d/2-1})$ for arbitrary polynomials, $O_d((n/q)^{d/4-1/2})$ for polynomials with non-negative coefficients, and $O_d(sqrt{m/q})$ for sparse polynomials with $m$ monomials. The approximation guarantees are with respect to the optimum of the level-$q$ sum-of-squares (SoS) SDP relaxation of the problem. Known polynomial time algorithms for this problem rely on decoupling lemmas. Such tools are not capable of offering a trade-off like our results as they blow up the number of variables by a factor equal to the degree. We develop new decoupling tools that are more efficient in the number of variables at the expense of less structure in the output polynomials. This enables us to harness the benefits of higher level SoS relaxations. We complement our algorithmic results with some polynomially large integrality gaps, albeit for a slightly weaker (but still very natural) relaxation. Toward this, we give a method to lift a level-$4$ solution matrix $M$ to a higher level solution, under a mild technical condition on $M$.
Cardinality constrained submodular function maximization, which aims to select a subset of size at most $k$ to maximize a monotone submodular utility function, is the key in many data mining and machine learning applications such as data summarizatio
This work studies the problem of maximizing a higher degree real homogeneous multivariate polynomial over the unit sphere. This problem is equivalent to finding the leading eigenvalue of the associated symmetric tensor of higher order, which is nonco
We study the first-order convex optimization problem, where we have black-box access to a (not necessarily smooth) function $f:mathbb{R}^n to mathbb{R}$ and its (sub)gradient. Our goal is to find an $epsilon$-approximate minimum of $f$ starting from
We study the existence of polynomial kernels, for parameterized problems without a polynomial kernel on general graphs, when restricted to graphs of bounded twin-width. Our main result is that a polynomial kernel for $k$-Dominating Set on graphs of t
We establish sharp estimates that adapt the polynomial method to arbitrary varieties. These include a partitioning theorem, estimates on polynomials vanishing on fixed sets and bounds for the number of connected components of real algebraic varieties