ﻻ يوجد ملخص باللغة العربية
A high-resolution spectropolarimetric survey of all (573) stars brighter than magnitude V=4 has been undertaken with Narval at TBL, ESPaDOnS at CFHT, and HarpsPol at ESO, as a ground-based support to the BRITE constellation of nano-satellites in the framework of the Ground-Based Observation Team (GBOT). The goal is to detect magnetic fields in BRITE targets, as well as to provide one very high-quality, high-resolution spectrum for each star. The survey is nearly completed and already led to the discovery of 42 new magnetic stars and the confirmation of several other magnetic detections, including field discoveries in, e.g., an Am star, two {delta} Scuti stars, hot evolved stars, and stars in clusters. Follow-up spectropolarimetric observations of approximately a dozen of these magnetic stars have already been performed to characterise their magnetic field configuration and strength in detail.
Inversion codes are computer programs that fit a model atmosphere to the observed Stokes spectra, thus retrieving the relevant atmospheric parameters. The rising interest in the solar chromosphere, where spectral lines are formed by scattering, requi
HD149404 is an evolved non-eclipsing O-star binary that has previously undergone a Roche lobe overflow interaction. Understanding some key properties of the system requires a determination of the orbital inclination and of the dimensions of the compo
The instrumental advances made in this new era of 4-meter class solar telescopes with unmatched spectropolarimetric accuracy and sensitivity, will enable the study of chromospheric magnetic fields and their dynamics with unprecedented detail. In this
Observations of Beta Lyr in four months of 2018 by three BRITE Constellation satellites (the red-filter BTr and BHr, and the blue-filter BLb) permitted a first, limited look into the light-curve variability in two spectral bands. The variations were
Among Wolf-Rayet stars, those of subtype WN8 are the intrinsically most variable. We have explored the long-term photometric variability of the brightest known WN8 star, WR 40, through four contiguous months of time-resolved, single-passband optical