ﻻ يوجد ملخص باللغة العربية
HD149404 is an evolved non-eclipsing O-star binary that has previously undergone a Roche lobe overflow interaction. Understanding some key properties of the system requires a determination of the orbital inclination and of the dimensions of the components. The BRITE-Heweliusz satellite was used to collect photometric data of HD149404. Additional photometry was retrieved from the SMEI archive. These data were analysed using a suite of period search tools. The orbital part of the lightcurve was modelled with the nightfall binary star code. The Gaia-DR2 parallax of HD149404 was used to provide additional constraints. The periodograms reveal a clear orbital modulation of the lightcurve with a peak-to-peak amplitude near 0.04 mag. The remaining non-orbital part of the variability is consistent with red noise. The lightcurve folded with the orbital period reveals ellipsoidal variations, but no eclipses. The minimum when the secondary star is in inferior conjunction is deeper than the other minimum due to mutual reflection effects between the stars. Combined with the Gaia-DR2 parallaxes, the photometric data indicate an orbital inclination in the range of 23{deg} to 31{deg} and a Roche lobe filling factor of the secondary larger than or equal to 0.96. The luminosity of the primary star is consistent with its present-day mass, whereas the more evolved secondary appears overluminous for its mass. We confirm that the primarys rotation period is about half the orbital period. Both features most probably stem from the past Roche lobe overflow episode.
Observations of Beta Lyr in four months of 2018 by three BRITE Constellation satellites (the red-filter BTr and BHr, and the blue-filter BLb) permitted a first, limited look into the light-curve variability in two spectral bands. The variations were
BRITE-Constellation (where BRITE stands for BRIght Target Explorer) is an international nanosatellite mission to monitor photometrically, in two colours, brightness and temperature variations of stars brighter than V = 4. The current mission design c
This paper aims to precisely determine the masses and detect pulsation modes in the two massive components of Beta Cen with BRITE-Constellation photometry. In addition, seismic models for the components are considered and the effects of fast rotation
Results of an analysis of the BRITE-Constellation photometry of the SB1 system and ellipsoidal variable $pi^5$ Ori (B2,III) are presented. In addition to the orbital light-variation, which can be represented as a five-term Fourier cosine series with
The BRITE mission is a pioneering space project aimed at the long-term photometric monitoring of the brightest stars in the sky by means of a constellation of nano-satellites. Its main advantage is high photometric accuracy and time coverage inaccess